Predictive multigenic scale. Analysis of own results in metastatic breast cancer
https://doi.org/10.17650/1994-4098-2023-19-1-69-81
Abstract
Background. Breast cancer is one of the most common female malignancies. Molecular diagnostic methods of tumor profiling allow us to analyze individual tumor characteristics, identify new prognostic and predictive markers.
Aim. To increase the efficacy of systemic therapy for breast cancer and reduce inappropriate prescriptions using the data on individual molecular tumor characteristics; to develop a polygenic panel to ensure a tailored approach to systemic therapy for breast cancer.
Materials and methods. We analyzed 84 tumor tissue samples from pre- and postmenopausal women with metastatic breast cancer who were treated and followed-up in 6 healthcare institutions. We assessed expression of genes involved in breast cancer. In a pilot study, we analyzed archived paraffin-embedded tumor specimens form 12 out of 1,216 patients with T1–2N0M0 breast cancer included into retrospective analysis. Gene expression was assessed using the nCounter technology based on direct digital detection of targets using fluorescent barcodes (nCounter Analysis System; NanoString Technologies, USA). Tumor tissue (biopsy and surgical specimens) was analyzed. The choice of genes was based on the literature data and experience in the development of other polygenic panels, as well as clinical significance of markers of prognostic scales. Gene mutations were confirmed by next generation sequencing and reverse transcription-polymerase chain reaction.
Results. We analyzed the expression of 28 genes with a high predictive value that have been substantially studied (including ESR1, PGR, PIK3CA, BCAR4, BCAS2, CCND1, CCND2, CCND3, FOXA1, Erb2, EGFR, CDH3, FOXC1, KRT14, KRT5, CD274, CDK4, CDK6, P53, PTEN, BRCA1, BRCA2, CHEK2, CLDN3, CLDN7, AR, TOP2a, TUBBIII). We identified 29 cases of discrepancy (29 / 84; 34.5 %) in tumor subtype, including 11 cases of luminal A and B breast cancer, which might potentially affect the choice of the treatment regimen. In 18 cases, there were some principal discrepancies in the tumor subtype that implied totally different treatment regimens. The proposed polygenic signature allows accurate identification of the tumor subtype in patients with metastatic breast cancer and choice of an optimal treatment strategy.
Conclusion. We have developed a 100-gene signature including molecular subtypes of breast cancer (luminal A, luminal B, basal, claudin-like) and treatment-oriented clusters. Molecular tumor profiling using this polygenic signature is an accurate method for determining tumor subtype in patients with breast cancer, which enables a tailored approach to therapy.
Keywords
About the Authors
R. M. PaltuevRussian Federation
Ruslan Malikovich Paltuev
198255
56 Prospekt Veteranov
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
S. N. Aleksakhina
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
A. S. Artemyeva
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
E. A. Baychorov
Russian Federation
355047
182a Oktyabrskaya St.
Stavropol
S. Yu. Bakharev
Russian Federation
656045
110k Zmeinogorskiy Trakt
Barnaul
A. A. Bozhok
Russian Federation
191014
55a / A Liteynyy Prospect
Saint Petersburg
V. A. Vasin
Russian Federation
153040
5 Lyubimova St.
Ivanovo
V. I. Vladimirov
Russian Federation
357502
31 Prospekt Kalinina
Pyatigorsk
O. A. Volynshchikova
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
A. Yu. Vorontsov
Russian Federation
603093
11 / 1 Delovaya St.
Nizhny Novgorod
E. A. Gaysina
Russian Federation
625041
32 Barnaulskaya St.
Tyumen
A. A. Hoffman
Russian Federation
656045
110k Zmeinogorskiy Trakt
Barnaul
E. N. Imyanitov
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
V. V. Klimenko
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
A. V. Komyakhov
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
M. M. Konstantinovа
Russian Federation
198255
56 Prospekt Veteranov
Saint Petersburg
M. V. Kopp
Russian Federation
443001
227 Chapaevskaya St.
Samara
A. G. Kudaybergenova
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
I. A. Lalak
Russian Federation
355047
182a Oktyabrskaya St.
Stavropol
D. L. Matevosyan
Russian Federation
603093
11 / 1 Delovaya St.
Nizhny Novgorod
N. M. Mudzhiri
Russian Federation
125367
80 Volokolamskoe Shosse
Moscow
O. V. Poltareva
Russian Federation
153040
5 Lyubimova St.
Ivanovo
O. I. Sevryukova
Russian Federation
355047
182a Oktyabrskaya St.
Stavropol
V. F. Semiglazov
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
T. Yu. Semiglazova
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
M. M. Urezkova
Russian Federation
197758
68 Leningradskaya St.
Pesochnyy Settlement
Saint Petersburg
L. A. Churilova
Russian Federation
656045
110k Zmeinogorskiy Trakt
Barnaul
References
1. Van de Vijver M. J. Molecular tests as prognostic factors in breast cancer. Virchows Arch 2014; 464 (3): 283–91. DOI: 10.1007/s00428-014-1539-0
2. Wilson F. R., Coombes M. E., Wylie Q. et al. Herceptin® (trastuzumab) in HER2-positive early breast cancer: protocol for a systematic review and cumulative network meta-analysis. Syst Rev 2017; 1 (6): 196. DOI: 10.1186/s13643-017-0588-2
3. Brandão M., Pondé N., Piccart-Gebhart M. Mammaprint™: a comprehensive review. Future Oncol 2019; 2 (15): 207–24. DOI: 10.2217/fon-2018-0221
4. Wang Y., Klijn J. G. M., Zhang Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 9460 (365): 671–9. DOI: 10.1016/S0140-6736(05)17947-1
5. Sotiriou C., Neo S.-Y., McShane L. M. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 2003; 18 (100): 10393–8. DOI: 10.1073/pnas.1732912100
6. Paik S., Shak S., Tang G. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 27 (351): 2817–26. DOI: 10.1056/NEJMoa041588
7. Breast cancer: clinical recommendations. Moscow: Ministry of Health of Russia; 2021. Available at: https://apicr.minzdrav.gov.ru/api.ashx?op=GetClinrecPdf&id=379_4. (In Russ.)
8. Hurvitz S. A., Gonçalves A., Rugo H. S. Talazoparib in patients with a germline BRCA-mutated advanced breast cancer: detailed safety analyses from the phase III EMBRACA Trial. Oncologist 2020; 25 (3): 439–50. DOI: 10.1634/theoncologist.2019-0493
9. Semiglazov V. F., Paltuev R. M., Semiglazov V. V. et al. General recommendations for the treatment of early breast cancer St. Gallen 2015, adapted by the experts of the Russian Society of Mammary Oncologists. Opukholi zhenskoy reproduktivnoy systemy = Tumors of female reproductive system 2015; 11 (3): 43–60. (In Russ.)
10. Perez E. A. Abstract S1-06: Stromal tumor-infiltrating lymphocytes (S-TILs): in the alliance N9831 trial S-TILs are associated with chemotherapy benefit but not associated with trastuzumab benefit. Cancer Res 2015; 9 (75 Suppl): S1-06-S1-06.
11. Sørlie T., Perou C. M., Tibshirani R. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 19 (98): 10869–74. DOI: 10.1073/pnas.191367098
12. Sparano J. A. TAILORx: trial assigning individualized options for treatment (Rx). Clin Breast Cancer 2006; 4 (7): 347–50. DOI: 10.3816/CBC.2006.n.051
13. Bertucci F., Finetti P., Cervera N. Gene expression profiling and clinical outcome in breast cancer. J Int Biology 2006; 4 (10): 429–43. DOI: 10.1089/omi.2006.10.429
14. Cowin P. A., Anglesio M., Etemadmoghadam D. Profiling the cancer genome. Ann Rev Gen Hum Genet 2010;11:133–59. DOI: 10.1146/annurev-genom-082509-141536
15. Viale G., Slaets L., Bogaerts J. et al. High concordance of protein (by IHC), gene (by FISH; HER2 only), and microarray readout (by TargetPrint) of ER, PgR, and HER2: results from the EORTC 10041/BIG 03-04 MINDACT trial. Ann Oncol 2014; 4 (25): 816–23.
16. Nielsen T. O., Hsu F. D., Jensen K. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 16 (10): 5367–74. DOI: 10.1158/1078-0432.CCR-04-0220
17. Cheang M. C. U., Chia S. K., Voduc D. Ki-67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009; 10 (101): 736–50. DOI: 10.1093/jnci/djp082
18. Livasy C. A., Karaca G., Nanda R. et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006; 2 (19): 264–71. DOI: 10.1038/modpathol.3800528
19. Blows F. M., Driver K. E., Schmidt M. K. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Мed 2010; 5 (7): e1000279. DOI: 10.1371/journal.pmed.1000279
20. Rakha E. A., Elsheikh S. E., Aleskandarany M. A. et al. Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 2009; 7 (15): 2302–10. DOI: 10.1158/1078-0432.CCR-08-2132
21. Cheang M. C. U., Chia S. K., Voduc D. Ki-67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009; 10 (101): 736–50. DOI: 10.1093/jnci/djp082
22. Lin C., Cui J., Peng Z. et al. Efficacy of platinum-based and non-platinum-based drugs on triple-negative breast cancer: meta-analysis. Eur J Med Res 2022; 27 (1): 201. DOI: 10.1186/s40001-022-00839-0
23. Tutt A. N. J., Garber J. E., Kaufman B. et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med 2021; 384 (25): 2394–405. DOI: 10.1056/NEJMoa2105215
24. Tung N. M., Robson M. E., Ventz S. et al. TBCRC 048: phase II study of olaparib for metastatic breast cancer and mutations in homologous recombination-related genes. J Clin Oncol 2020; 38 (36): 4274–82. DOI: 10.1200/JCO.20.02151
25. Litton J. K., Hurvitz S. A., Mina L. A. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: final overall survival results from the EMBRACA trial. Ann Oncol 2020; 31 (11): 1526–35. DOI: 10.1016/j.annonc.2020.08.2098
26. Gonzalez-Conchas G. A., Rodriguez-Romo L., Hernandez-Barajas D. et al. Epidermal growth factor receptor overexpression and outcomes in early breast cancer: A systematic review and a meta-analysis. Cancer Treat Rev 2018; 62: 1–8. DOI: 10.1016/j.ctrv.2017.10.008
27. Iancu G., Serban D., Badiu C. D. et al. Tyrosine kinase inhibitors in breast cancer (review). Exp Ther Med 2022; 23 (2): 114. DOI: 10.3892/etm.2021.11037
28. Cortés J., Cescon D. W., Rugo H. S. et al. Final results of KEYNOTE-355: Randomized, double-blind, phase 3 study of pembrolizumab + chemotherapy vs placebo + chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer. 2021 San Antonio Breast Cancer Symposium. Abstr. GS1-02.
29. Breast Cancer. Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20 (6): 691–722. DOI: 10.6004/jnccn.2022.0030
30. Allison K. H., Hammond M. E. H., Dowsett M. et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J Clin Oncol 2020; 38 (12): 1346–66. DOI: 10.1200/JCO.19.02309
31. Sheffield B. S., Kos Z., Asleh-Aburaya K. et al. Molecular subtype profiling of invasive breast cancers weakly positive for estrogen receptor. Breast Cancer Res Treat 2016; 155 (3): 483–90. DOI: 10.1007/s10549-016-3689-z
32. Yi M., Huo L., Koenig K. B. et al. Which threshold for ER positivity? A retrospective study based on 9639 patients. Ann Oncol 2014; 25 (5): 1004–11. DOI: 10.1093/annonc/mdu053
33. Jeselsohn R., Yelensky R., Buchwalter G. et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 2014; 7 (20): 1757–67. DOI: 10.1158/1078-0432.CCR-13-2332
34. Jeselsohn R., Buchwalter G., De Angelis C. et al. ESR1 mutations – a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol 2015; 10 (12): 573–83. DOI: 10.1038/nrclinonc.2015.117
35. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 7418 (490): 61–70. DOI: 10.1038/nature11412
36. Takeshita T., Yamamoto Y., Yamamoto-Ibusuki M. et al. Droplet digital polymerase chain reaction assay for screening of ESR1 mutations in 325 breast cancer specimens. Transl Res 2015; 6 (166): 540–553.e2. DOI: 10.1016/j.trsl.2015.09.003
37. Wang P., Bahreini A., Gyanchandani R. et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin Cancer Res 2016; 5 (22): 1130–7. DOI: 10.1158/1078-0432.CCR-15-1534
38. André F., Ciruelos E., Rubovszky G. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 2019; 380 (20): 1929–40. DOI: 10.1056/NEJMoa1813904
39. Modi Sh., Jacot W., Yamashita T. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med 2022; 387 (1): 9–20. DOI: 10.1056/NEJMoa2203690
Review
For citations:
Paltuev R.M., Aleksakhina S.N., Artemyeva A.S., Baychorov E.A., Bakharev S.Yu., Bozhok A.A., Vasin V.A., Vladimirov V.I., Volynshchikova O.A., Vorontsov A.Yu., Gaysina E.A., Hoffman A.A., Imyanitov E.N., Klimenko V.V., Komyakhov A.V., Konstantinovа M.M., Kopp M.V., Kudaybergenova A.G., Lalak I.A., Matevosyan D.L., Mudzhiri N.M., Poltareva O.V., Sevryukova O.I., Semiglazov V.F., Semiglazova T.Yu., Urezkova M.M., Churilova L.A. Predictive multigenic scale. Analysis of own results in metastatic breast cancer. Tumors of female reproductive system. 2023;19(1):69-81. (In Russ.) https://doi.org/10.17650/1994-4098-2023-19-1-69-81