Tumor microenvironment parameters as a predictor of the duration of clinical effectiveness of immunotargeted therapy in advanced or metastatic endometrial cancer: A pilot multicenter observational study
https://doi.org/10.17650/1994-4098-2024-20-1-114-123
Abstract
Background. The inclusion of lenvatinib in the immunotherapy regimen for patients with MSS/pMMR endometrial cancer (EC) is due to its ability to modulate the tumor microenvironment, which allows the use of pembrolizumab in low-immunogenic tumors. However, only 30 % of patients with advanced or metastatic EC have a clinical response when treated with pembrolizumab and lenvatinib. In this regard, there is an obvious need to identify biomarkers that allow accurate selection of candidates for this type of therapy.
Aim. To determine the predictive value of subpopulations of lymphocytes and macrophages, their expression of PD-1, expression of estrogen receptors, as well as vessel density in immunotargeted therapy for advanced or metastatic EC.
Materials and methods. An open-label non-randomized observational association study was performed, involving a total of 22 patients with advanced or metastatic MSS/pMMR EC treated with pembrolizumab and lenvatinib. Duration of clinical effectiveness was used as a parameter to stratify patients. Using TSA-associated multiplex immunofluorescence, the proportions of CD8+ T lymphocytes, CD20+ B lymphocytes, FoxP3+ T regulatory lymphocytes and CD163+macrophages in tumor samples before the start of immunotargeted therapy were analyzed.
Results. Three microenvironmental parameters were found to be associated with duration of clinical efficacy: the proportion of CD20+ B cells, the proportion of FoxP3+ T regulatory lymphocytes, and the ratio of CD8+/CD20+ lymphocytes in the tumor microenvironment. However, the CD8+/CD20+ lymphocyte ratio had the greatest predictive value; a value below 3.219 was associated with long clinical efficacy in patients with advanced or metastatic EC.
Conclusion. The ratio of cytotoxic and B-lymphocytes in the microenvironment is a reliable predictor marker of the duration of the period of clinical effectiveness of immunotargeting therapy in advanced or metastatic EC.
Keywords
About the Authors
A. A. MaltsevaRussian Federation
5 Kooperativnyy Pereulok, Tomsk 634009, Russia
A. Yu. Kalinchuk
Russian Federation
5 Kooperativnyy Pereulok, Tomsk 634009, Russia
N. V. Krakhmal
Russian Federation
5 Kooperativnyy Pereulok, Tomsk 634009, Russia
2 Moskovskiy Trakt, Tomsk 634050, Russia
N. M. Chernorubashkina
Russian Federation
32 Frunze St., Irkutsk 664035, Russia
E. S. Martynova
Russian Federation
16 1-ya Smolenskaya St., Krasnoyarsk 660133, Russia
R. A. Zukov
Russian Federation
16 1-ya Smolenskaya St., Krasnoyarsk 660133, Russia
A. A. Gofman
Russian Federation
10k Zmeinogorskiy Trakt, Barnaul 656045, Russia
A. B. Villert
Russian Federation
5 Kooperativnyy Pereulok, Tomsk 634009, Russia
O. N. Churuksaeva
Russian Federation
5 Kooperativnyy Pereulok, Tomsk 634009, Russia
L. A. Kolomiets
Russian Federation
5 Kooperativnyy Pereulok, Tomsk 634009, Russia
2 Moskovskiy Trakt, Tomsk 634050, Russia
L. A. Tashireva
Russian Federation
Lyubov Aleksandrovna Tashireva
5 Kooperativnyy Pereulok, Tomsk 634009, Russia
References
1. Shakhzadova A.O., Starinsky V.V., Lisichnikova I.V. The state of cancer care for the population of Russia in 2022. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology 2023; 22(5):5–13. (In Russ.). DOI: 10.21294/1814-4861-2023-22-5-5-13
2. Rütten H., Verhoef C., van Weelden W.J. et al. Recurrent endometrial cancer: Local and systemic treatment options. Cancers (Basel) 2021;13(24):6275. DOI: 10.3390/cancers13246275
3. Del Carmen M.G., Boruta D.M., Schorge J.O. Recurrent endometrial cancer. Clin Obstet Gynecol 2011;54(2):266–77. DOI: 10.1097/GRF.0b013e318218c6d1
4. Nechushkina V.M., Kolomiets L.A., Kravets O.A. et al. Practical recommendations for drug treatment of uterine cancer and uterine sarcomas. Zlokachestvennye opukholi = Malignant Tumors 2022;12(3S2–1):260–75. (In Russ.). DOI: 10.18027/2224-5057-2022-12-3s2-260-275
5. Makker V., Colombo N., Casado Herráez A. et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med 2022;386(5):437–48. DOI: 10.1056/NEJMoa2108330
6. Fleming G.F. Second-line therapy for endometrial cancer: The need for better options. J Clin Oncol 2015;33(31):3535–40. DOI: 10.1200/JCO.2015.61.7225
7. Marcus L., Lemery S.J., Keegan P., Pazdur R. FDA Approval Summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 2019;25(13):3753–8. DOI: 10.1158/1078-0432.CCR-18-4070
8. Makker V., Colombo N., Casado Herráez A. et al. Lenvatinib plus pembrolizumab in previously treated advanced endometrial cancer: Updated efficacy and safety from the randomized phase III study 309/KEYNOTE-775. J Clin Oncol 2023;41(16):2904–10. DOI: 10.1200/JCO.22.02152
9. Maiorano B.A., Maiorano M.F.P., Cormio G. et al. How immunotherapy modified the therapeutic scenario of endometrial cancer: A systematic review. Front Oncol 2022;12:844801. DOI: 10.3389/fonc.2022.844801
10. Tashireva L.A., Muravyova D.T., Popova N.O. et al. Tumor microenvironment parameters determine the effectiveness of anti-PD-1/PD-L1 therapy. Biokhimiya = Biochemistry 2021:86(11):1677–86. (In Russ.). DOI: 10.31857/S0320972521110063
11. Liontos M., Papanota A.M., Svarna A. et al. Immunohistochemical expression of ER and p53 as predictive biomarkers of immunotherapy in endometrial cancer. JCO 2023:41(16 Suppl):e17626. DOI: 10.1200/JCO.2023.41.16_suppl.e17626
12. Goodman A.M., Sokol E.S., Frampton G.M. et al. Microsatellitestable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol Res 2019;7(10):1570–3. DOI: 10.1158/2326-6066.CIR-19-0149
13. De Jong R., Leffers N., Boezen H. et al. Presence of tumor-infiltrating lymphocytes is an independent prognostic factor in type I and II endometrial cancer. Gynecol Oncol 2009;114(1):105–10. DOI: 10.1016/j.ygyno.2009.03.022
14. Yamamoto Y., Matsui J., Matsushima T. et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell 2014;6:18. DOI: 10.1186/2045-824X-6-18
15. Kato Y., Tabata K., Kimura T. et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One 2019;14(2):e0212513. DOI: 10.1371/journal.pone.0212513
16. Kimura T., Kato Y., Ozawa Y. et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci 2018;109(12):3993–4002. DOI: 10.1111/cas.13806
17. Yi C., Chen L., Lin Z. et al. Lenvatinib targets FGF receptor 4 to enhance antitumor immune response of anti-programmed cell death-1 in HCC. Hepatology 2021;74(5):2544–60. DOI: 10.1002/hep.31921
18. Delgado A., Guddati A.K. Clinical endpoints in oncology – a primer. Am J Cancer Res 2021;11(4):1121–31.
19. Guidi A.J., Berry D.A., Broadwater G. et al. Association of angiogenesis in lymph node metastases with outcome of breast cancer. J Natl Cancer Inst 2000;92(6):486–92. DOI: 10.1093/jnci/92.6.486
20. Tashireva L.A., Popova N.O., Alifanov V.V. et al. Immunological predictors of the therapeutic efficacy of eribulin in locally advanced or metastatic breast cancer: A pilot study. Opukholi zhenskoy reproduktivnoy systemy = Tumors of Female Reproductive System 2021;17(4): 48–55. (In Russ.). DOI: 10.17650/1994-4098-2021-17-4-48-55
21. Makker V., Colombo N., Casado Herráez A. et al. Study 309-KEYNOTE-775 Investigators. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med 2022:3;386(5): 437–48. DOI: 10.1056/NEJMoa2108330
22. Shen M., O’Donnell E., Leon G. et al. The role of endometrial B cells in normal endometrium and benign female reproductive pathologies: A systematic review. Hum Reprod Open 2021;2022(1): hoab043. DOI: 10.1093/hropen/hoab043
23. Shen M., Child T., Mittal M. et al. B cell subset analysis and gene expression characterization in mid-luteal endometrium. Front Cell Dev Biol 2021;9:709280. DOI: 10.3389/fcell.2021.709280
24. Wu Z., Zhou J., Xiao Y. et al. CD20+CD22+ADAM28+ B cells in tertiary lymphoid structures promote immunotherapy response. Front Immunol 2022;13:865596. DOI: 10.3389/fimmu.2022.865596
25. Cowan M., Xie P., Chen S. et al. Immune markers of response to pembrolizumab and guadecitabine in platinum resistant ovarian cancer utilizing multiplex immunohistochemistry (mIHC). Gynecol Oncol 2021:162(1):S28, S29. DOI: 10.1016/S0090-8258(21)00699-5
26. Sharonov G.V., Serebrovskaya E.O., Yuzhakova D.V. et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 2020;20(5):294–307. DOI: 10.1038/s41577-019-0257-x
27. Flynn J.P., Gerriets V. Pembrolizumab. In: StatPearls. Treasure Island: StatPearls, 2023.
28. Zheng W. Molecular classification of endometrial cancer and the 2023 FIGO staging: Exploring the challenges and opportunities for pathologists. Cancers 2023;15:4101. DOI: 10.3390/cancers15164101
29. Cancer Genome Atlas Research Network, Kandoth C., Schultz N. et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497(7447):67–73. DOI: 10.1038/nature12113
30. Zhao Z., Zheng B., Zheng J. et al. Integrative analysis of inflammatory response-related gene for predicting prognosis and immuno-therapy in glioma. J Mol Neurosci 2023;73(7–8):608–27. DOI: 10.1007/s12031-023-02142-x
Review
For citations:
Maltseva A.A., Kalinchuk A.Yu., Krakhmal N.V., Chernorubashkina N.M., Martynova E.S., Zukov R.A., Gofman A.A., Villert A.B., Churuksaeva O.N., Kolomiets L.A., Tashireva L.A. Tumor microenvironment parameters as a predictor of the duration of clinical effectiveness of immunotargeted therapy in advanced or metastatic endometrial cancer: A pilot multicenter observational study. Tumors of female reproductive system. 2024;20(1):114-123. (In Russ.) https://doi.org/10.17650/1994-4098-2024-20-1-114-123