Preview

Tumors of female reproductive system

Advanced search

Installation of preoperative and intraoperative fiducial markers for radiation therapy in mammary gland surgery (literature review)

https://doi.org/10.17650/1994-4098-2024-20-4-81-87

Abstract

Over 5,000 new cases of breast cancer are diagnosed in the Republic of Kazakhstan every year. More than 40 % of them are treated with organ-preserving surgery followed by radiation therapy to minimize the risk of local recurrence. Notably, over 70 % of breast cancer recurrences occur within the primary tumor bed. Radiation therapy aims to prevent recurrence after radical surgery, and precise targeting is crucial for its effectiveness. However, the lack of standardized methods for the exact localization of the tumor margin presents a significant challenge. Radiation oncologists must carefully determine the tumor bed when planning radiation therapy.
Publications for analysis were searched in the PubMed and eLibrary databases using the relevant keywords.
Titanium surgical clips are commonly used to localize the tumor cavity in mammary gland radical surgery. However, tissue movement and postoperative seroma formation can compromise the positioning of clips within the cavity, especially with abnormal fluid accumulation. Originally designed for hemostasis, these clips may create ambiguity when used to mark tumor bed margins. Various alternative methods for more precise delineation of tumor bed margins have advantages and limitations regarding practicality, patient comfort, and precision. Despite certain challenges in clinical application, gold markers remain the most efficient way of localizing primary tumors and resection margins.
These findings highlight the urgent need for innovative approaches to marking the tumor cavity in mammary gland surgery to improve the precision of tissue localization for radiation therapy. Future advancements in this area should build on the advantages of gold markers and ensure accurate tumor localization.

About the Authors

A. Zh. Abdrakhmanova
Kazakh Institute of Oncology and Radiology; Asfendiyarov Kazakh National Medical University
Kazakhstan

 91 Prospekt Abaya, Almaty 050000, Republic of Kazakhstan 

 94 Tole bi St., Almaty 050000, Republic of Kazakhstan 



N. S. Khvan
Kazakh Institute of Oncology and Radiology
Kazakhstan

 91 Prospekt Abaya, Almaty 050000, Republic of Kazakhstan 



T. G. Goncharova
Asfendiyarov Kazakh National Medical University
Kazakhstan

 Tatyana Georgievna Goncharova 

 94 Tole bi St., Almaty 050000, Republic of Kazakhstan 



Sh. S. Sultanseitov
Kazakh Institute of Oncology and Radiology
Kazakhstan

 91 Prospekt Abaya, Almaty 050000, Republic of Kazakhstan 



A. B. Bayzhigitov
Kazakh Institute of Oncology and Radiology
Kazakhstan

 91 Prospekt Abaya, Almaty 050000, Republic of Kazakhstan 



A. Ya. Toguzbayeva
Kazakh Institute of Oncology and Radiology
Kazakhstan

 91 Prospekt Abaya, Almaty 050000, Republic of Kazakhstan 



A. S. Kazhenova
Kazakh Institute of Oncology and Radiology
Kazakhstan

 91 Prospekt Abaya, Almaty 050000, Republic of Kazakhstan 



A. A. Khozhaev
Asfendiyarov Kazakh National Medical University
Kazakhstan

 94 Tole bi St., Almaty 050000, Republic of Kazakhstan 



D. E. Aymanova
Kazakh Institute of Oncology and Radiology
Kazakhstan

 91 Prospekt Abaya, Almaty 050000, Republic of Kazakhstan 



References

1. Ferlay J., Ervik M., Lam F. et al. Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer, 2024. Available at: https://gco.iarc.who.int/today.

2. Indicators of the oncology service of the Republic of Kazakhstan, 2023 (statistical and analytical materials). Edited by D.R. Kaydarova. Almaty, 2024. 410 p. DOI: 10.52532/20-09-2024-1-410

3. Jonczyk M.M., Jean J., Graham R., Chatterjee A. Surgical trends in breast cancer: A rise in novel operative treatment options over a 12 year analysis. Breast Cancer Res Treat 2019;173:267–74. DOI: 10.1007/s10549-018-5018-1

4. Den Hartogh M.D., Philippens M.E., Van Dam I.E. et al. Postlumpectomy CT-guided tumor bed delineation for breast boost and partial breast irradiation: Can additional pre- and postoperative imaging reduce interobserver variability? Oncol Lett 2015;10: 2795–801. DOI: 10.3892/ol.2015.3697

5. Barrio A.V., Morrow M. Appropriate margin for lumpectomy excision of invasive breast cancer. Chin Clin Oncol 2016;5:35. DOI: 10.21037/cco.2016.03.22

6. Coles C.Е., Wilson C.B., Cumming J. et al. Titanium clip placement to allow accurate tumour bed localisation following breast conserving surgery: Audit on behalf of the IMPORT Trial Management Group. Eur J Surg Oncol 2009;35:578–82. DOI: 10.1016/j.ejso.2008.09.005

7. Lopez Alfonso J.C., Poleszczuk J., Walker R. et al. Immunologic consequences of sequencing cancer radiotherapy and surgery. JCO Clin Cancer Inform 2019;3:1–16. DOI: 10.1200/CCI.18.00075

8. Krawczyk J.J., Engel B. The importance of surgical clips for adequate tangential beam planning in breast conserving surgery and irradiation. Int J Radiat Oncol Biol Phys 1999;43:347–50. DOI: 10.1016/s0360-3016(98)00402-7

9. Machtay M., Lanciano R., Hoffman J., Hanks G.E. Inaccuracies in using the lumpectomy scar for planning electron boosts in primary breast carcinoma. Int J Radiat Oncol Biol Phys 1994;30:43–8. DOI: 10.1016/0360-3016(94)90517-7

10. Lewis L., Cox J., Morgia M. et аl. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time. J Med Radiat Sci 2015;62:177–83. DOI: 10.1002/jmrs.114

11. Yang T.J., Tao R., Elkhuizen Paula H.M. et al. Tumor bed delineation for external beam accelerated partial breast irradiation: A systematic review. Radiother Oncol 2013;108:181–9. DOI: 10.1016/j.radonc.2013.05.028

12. Kraus-Tiefenbacher U., Welzel G., Brade J. et al. Postoperative seroma formation after intraoperative radiotherapy using lowkilovoltage X-rays given during breast-conserving surgery. Int J Rad Oncol Biol Phys 2010;77:1140–5. DOI: 10.1016/j.ijrobp.2009.06.008

13. Kirby A.M., Jena R., Harris E.J. et al. Tumour bed delineation for partial breast/breast boost radiotherapy: What is the optimal number of implanted markers? Radiother Oncol 2013;106:231–5. DOI: 10.1016/j.radonc.2013.02.003

14. Patel U., Haffty B.G., Azu M. et al. Placement and visualization of surgical clips in the lumpectomy cavity of patients with stage 0, I, and II breast cancer treated with breast conserving surgery and radiation therapy (BCS RT). Int J Radiat Oncol Biol Phys 2010;78(Suppl 3):S251, S252. DOI: 10.1016/j.ijrobp.2010.07.601

15. Dzhugashvili M., Tournay E., Pichenot C. et al. 3D-conformal accelerated partial breast irradiation treatment planning: The value of surgical clips in the delineation of the lumpectomy cavity. Radiat Oncol 2009;4:70.

16. Azu M., Goyal S., Patel U. et al. Has placement of surgical clips in the lumpectomy bed fallen out of favor? Ann Surg Oncol 2011;18:1529–32. DOI: 10.1186/1748-717X-4-70

17. Smith B.D., Bellon J.R., Blitzblau R. et al. Radiation therapy for the whole breast: Executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract Radiat Oncol 2018;8:145–52. DOI: 10.1016/j.prro.2018.01.012

18. Ippolito E., Trodella L., Silipigni S. et al. Estimating the value of surgical clips for target volume delineation in external beam partial breast radiotherapy. Clin Oncol 2014;26:677–83. DOI: 10.1016/j.clon.2014.08.003

19. Wang W., Li J., Xing J. et al. Analysis of the variability among radiation oncologists in delineation of the postsurgical tumor bed based on 4D-CT. Oncotarget 2016;7:70516–23. DOI: 10.18632/oncotarget.12044

20. Esserman L.E., Cura M.A., Dacosta D. Recognizing pitfalls in early and late migration of clip markers after imaging-guided directional vacuum-assisted biopsy. Radiographics 2004;24:147–56. DOI: 10.1148/rg.241035052

21. Demircioglu O., Aribal E., Uluer M. et al. Surgical clips in breastconserving surgery: Do they represent the tumour bed accurately? Curr Med Imaging Rev 2019;15:573–7. DOI: 10.2174/1573405614666180821121254

22. Park C.K., Pritz J., Zhang G.G. et al. Validating fiducial markers for image-guided radiation therapy for accelerated partial breast irradiation in early-stage breast cancer. Int J Rad Oncol Biol Phys 2012;82:e425–31.

23. Shaikh T., Chen T., Khan A. et al. Improvement in interobserver accuracy in delineation of the lumpectomy cavity using fiducial markers. Int J Rad Oncol Biol Phys 2010;78:1127–34. DOI: 10.1016/j.ijrobp.2009.09.025

24. Handsfield L.L., Yue N.J., Zhou J. et al. Determination of optimal fiducial marker across image-guided radiation therapy (IGRT) modalities: Visibility and artifact analysis of gold, carbon, and polymer fiducial markers. J Appl Clin Med Phys 2012;13:3976. DOI: 10.1120/jacmp.v13i5.3976

25. Pirlamarla A., Ferro A., Yue N.J. et al. Optimization of surgical clip placement for breast-conservation therapy. Pract Radiat Oncol 2014;4:153–59. DOI: 10.1016/j.prro.2013.07.013


Review

For citations:


Abdrakhmanova A.Zh., Khvan N.S., Goncharova T.G., Sultanseitov Sh.S., Bayzhigitov A.B., Toguzbayeva A.Ya., Kazhenova A.S., Khozhaev A.A., Aymanova D.E. Installation of preoperative and intraoperative fiducial markers for radiation therapy in mammary gland surgery (literature review). Tumors of female reproductive system. 2024;20(4):81-87. (In Russ.) https://doi.org/10.17650/1994-4098-2024-20-4-81-87

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)