Муцины как фактор канцерогенеза и потенциальная мишень терапии муцинозных опухолей яичников
https://doi.org/10.17650/1994-4098-2024-20-4-127-132
Аннотация
Муцинозная карцинома яичников – редкая гистологическая форма эпителиального рака яичников. Данные опухоли демонстрируют плохой объективный ответ на стандартные схемы химиотерапии для эпителиального рака яичников и поддерживающую терапию ингибиторами PARP, что приводит к короткому периоду общей и безрецидивной выживаемости, а также неблагоприятному прогнозу у пациенток с поздними стадиями заболевания. Макроскопически муцинозная карцинома яичников характеризуется наличием в кистозной полости слизи, состоящей в основном из муцина. В настоящем обзоре подробно рассмотрена роль муцинов в патогенезе и терапии муцинозной карциномы яичников в контексте формирования химиорезистентности и возможной точки приложения для таргетной терапии.
Об авторах
А. Г. КедроваРоссия
Россия, 115682 Москва, Ореховый бульвар, 28
Т. А. Греян
Россия
Татевик Ахуриковна Греян
Россия, 115682 Москва, Ореховый бульвар, 28
Список литературы
1. Reynolds I.S., Fichtner M., McNamara D.A. et al. Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers. Cancer Metastasis Rev 2019;38:237–57. DOI: 10.1007/s10555-019-09781-w
2. Xie L., Liu J., Wang H. The expression of mucin 1 in tumor cells and its research progress as a therapeutic target. Oncology Progress 2022;20(5):449–53. DOI: 10.11877/j.issn.1672-1535.2022.20.05.05.
3. Li Y.R., Lin P. Expression and significance of MUC1 and BDNF in epithelial ovarian cancer. Int J Lab Med 2022;1:110–3. DOI: 10.3969/j.issn.1673-4130.2022.01.023
4. Hou R., Jiang L., Liu D. et al. Lewis(y) antigen promotes the progression of epithelial ovarian cancer by stimulating MUC1 expression. Int J Mol Med 2017;40(2):293–302. DOI: 10.3892/ijmm.2017.3009
5. Wang F., Zhang Q., Zhang H. et al. MUC16 promotes EOC proliferation by regulating GLUT1 expression. J Cell Mol Med 2021;25(6):3031–40. DOI: 10.1111/jcmm.16345
6. Coelho R., Ricardo S., Amaral A.L. et al. Regulation of invasion and peritoneal dissemination of ovarian cancer by mesothelin manipulation. Oncogenesis 2020;9(6):61.
7. Rump A., Morikawa Y., Tanaka M. et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem 2004;279(10):9190–8.
8. Albarracin C.T., Jafri J., Montag A.G. et al. Differential expression of MUC2 and MUC5AC mutin genes in primary ovarian and metastatic colonic carcinoma. Hum Pathol.2000;31(6):672–7. DOI: 10.1053/hupa.2000.6799
9. Hirabayashi K., Yasuda M., Kajiwara H. et al. Alterations in mucin expression in ovarian mucinous tumors: Immunohistochemical analysis of MUC2, MUC5AC, MUC6, and CD10 expression. Acta Histochem. Cytoc 2008;41(2):15–21. DOI: 10.1267/ahc.08008
10. Ohya A., Matoba H., Fujinaga Y., Nakayama J. Decreased gastric gland mucin-specific O-glycans are involved in the progression of ovarian primary mucinous tumours. Acta Histochem Cytoc 2021;54(4):115–22.
11. Rico S.D., Schmalfeldt B., Müller V. et al. MUC5AC expression is linked to mucinous/endometroid subtype, absence of nodal metastasis and mismatch repair deficiency in ovarian cancer. Pathol Res Pract 2021;224:153533. DOI: 10.1016/j.prp.2021.153533
12. Chauhan S.C., Vannatta K., Ebeling M.C. et al. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res 2009;69(3):765–74.
13. Boivin M., Lane D., Piché A., Rancourt C. CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecol Oncol 2009;115(3):407–13.
14. Matte I., Lane D., Boivin M. et al. MUC16 mucin (CA125) attenuates TRAIL-induced apoptosis by decreasing TRAIL receptor R2 expression and increasing c-FLIP expression. BMC Cancer 2014;14(1):1–14.
15. Fass D., Thornton D.J. Mucin networks: Dynamic structural assemblies controlling mucus function. Curr Opin Struct Biol 2023;79:102524. DOI: 10.1016/j.sbi.2022.102524
16. Javitt G., Khmelnitsky L., Albert L. et al. Assembly mechanism of mucin and von Willebrand factor polymers. Cell 2020;183:717–29. DOI: 10.1016/j.cell.2020.09.021
17. Skrypek N., Duchêne B., Hebbar M. et al. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene 2013;32(13):1714–23. DOI: 10.1038/onc.2012.179
18. Ponnusamy M.P., Seshacharyulu P., Vaz A. et al. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells. J Ovarian Res 2011;4(1):1–10. DOI: 10.1186/1757-2215-4-7
19. Beatson R.E., Taylor-Papadimitriou J., Burchell J.M. MUC1 immunotherapy. Immunotherapy 2010;2(3):305–27.
20. Tang C.K., Katsara M., Apostolopoulos V. Strategies used for MUC1 immunotherapy: Human clinical studies. Expet Rev Vaccine 2008;7(7):963–75. DOI: 10.1586/14760584.7.7.963
21. Liu N., Zhou C., Zhao J., Chen Y. Reversal of paclitaxel resistance in epithelial ovarian carcinoma cells by a MUC1 aptamer-let-7i chimera. Cancer Invest 2012;30(8):577–82. DOI: 10.3109/07357907.2012.707265
22. Dai F., Zhang Y., Zhu X. et al. The anti-chemoresistant effect and mechanism of MUC1 aptamer-miR-29b chimera in ovarian cancer. Gynecol Oncol 2013;131(2):451–9. DOI: 10.1016/j.ygyno.2013.07.112
23. Wu X., Kang Y., He Y. et al. Degradation of the surface mucus layer of mucinous ovarian cancer and its significance for the anti-cancer effect of Taxol. Chinese J Pract Gynecol Obstet 2008;7:526–8.
24. Danielczyk A., Stahn R., Faulstich D. et al. PankoMab: A potent new generation anti-tumour MUC1 antibody. Cancer Immunol Immunother 2006;55(11):1337–47.
25. Fiedler W., DeDosso S., Cresta S. et al. A phase I study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas. Eur J Cancer 2016;63:55–63. DOI: 10.1016/j.ejca.2016.05.003
26. Ledermann J.A., Zurawski B., Raspagliesi F. et al. Maintenance therapy of patients with recurrent epithelial ovarian carcinoma with the anti-tumor-associated-mucin-1 antibody gatipotuzumab: Results from a double-blind, placebo-controlled, randomized, phase II study. ESMO Open 2022;7(1):100311. DOI: 10.1016/j.esmoop.2021.100311
27. Gray H.J., Gargosky S.E. Progression-free survival in ovarian cancer patients in second remission with mucin-1 autologous dendritic cell therapy. J Clin Oncol 2014;32(15 Suppl):5504.
28. Mitchell P.L., Quinn M.A., Grant P.T. et al. A phase 2, single-arm study of an autologous dendritic cell treatment against mucin 1 in patients with advanced epithelial ovarian cancer. J Immunother Cancer 2014;2:1–9. DOI: 10.1186/2051-1426-2-16
29. Berek J.S., Taylor P.T., Gordon A. et al. Randomized, placebocontrolled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer. J Clin Oncol 2004;22(17):3507–16. DOI: 10.1200/JCO.2004.09.016
30. Braly P., Nicodemus C.F., Chu C. et al. The Immune adjuvant properties of front-line carboplatin-paclitaxel: A randomized phase 2 study of alternative schedules of intravenous oregovomab chemoimmunotherapy in advanced ovarian cancer. J Immunother 2009;32(1):54–65.
31. Brewer M., Angioli R., Scambia G. et al. Front-line chemoimmunotherapy with carboplatin-paclitaxel using oregovomab indirect immunization in advanced ovarian cancer: A randomized phase II study. Gynecol Oncol 2020;156(3):523–9. DOI: 10.1016/j.ygyno.2019.12.024
32. Secord A.A., Barroilhet L.M., Lim M.C. et al. FLORA-5/GOG3035: Frontline chemo-immunotherapy paclitaxel-carboplatinoregovomab [PCO] versus chemotherapy (paclitaxel-carboplatinplacebo [PCP]) in patients with advanced epithelial ovarian cancer (EOC) – Phase III, double-blind, placebo-controlled, global, multinational study. J Clin Oncol 2022;40(16 Suppl):TPS5619.
33. Sabbatini P., Harter P., Scambia G. et al. Abagovomab as maintenance therapy in patients with epithelial ovarian cancer: A phase III trial of the AGO OVAR, COGI, GINECO, and GEICO-the MIMOSA study. J Clin Oncol 2013;31(12):1554. DOI: 10.1200/JCO.2012.46.4057
34. El Bairi K., Al Jarroudi O., Afqir S. Revisiting antibody-drug conjugates and their predictive biomarkers in platinum-resistant ovarian cancer. Semin Cancer Biol 2021;77:42–55. DOI: 10.1016/j.semcancer.2021.03.031
35. Liu J.F., Moore K.N., Birrer M.J. et al. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer. Ann Oncol 2016;27(11):2124–30. DOI: 10.1093/annonc/mdw401
36. Liu J., Burris H., Wang J.S. et al. An open-label phase I doseescalation study of the safety and pharmacokinetics of DMUC4064A in patients with platinum-resistant ovarian cancer. Gynecol Oncol 2021;163(3):473–80. DOI: 10.1016/j.ygyno.2021.09.023
37. Crawford A., Haber L., Kelly M.P. et al. A Mucin 16 bispecific T cell-engaging antibody for the treatment of ovarian cancer. Sci Transl Med 2019;11(497):eaau7534.
38. Yeku O.O., Rao T.D., Laster I. et al. Bispecific T-cell engaging antibodies against MUC16 demonstrate efficacy against ovarian cancer in monotherapy and in combination with PD-1 and VEGF inhibition. Front Immunol 2021;12:663379. DOI: 10.3389/fimmu.2021.663379.
39. Chekmasova A.A., Rao T.D., Nikhamin Y. et al. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res 2010;16(14):3594–606. DOI: 10.1158/1078-0432.CCR-10-0192
40. Li T., Wang J. Therapeutic effect of dual CAR-T targeting PDL1 and MUC16 antigens on ovarian cancer cells in mice. BMC Cancer 2020;20:1–13. DOI: 10.1186/s12885-020-07180-x
Рецензия
Для цитирования:
Кедрова А.Г., Греян Т.А. Муцины как фактор канцерогенеза и потенциальная мишень терапии муцинозных опухолей яичников. Опухоли женской репродуктивной системы. 2024;20(4):127-132. https://doi.org/10.17650/1994-4098-2024-20-4-127-132
For citation:
Kedrova A.G., Greyan T.A. Mucins as a factor of carcinogenesis and a potential target for therapy of mucinous ovarian tumors. Tumors of female reproductive system. 2024;20(4):127-132. (In Russ.) https://doi.org/10.17650/1994-4098-2024-20-4-127-132