Predictors of the formation of antitumor immunity in breast cancer patients and the analysis of the results of the use of immune checkpoint inhibitors
https://doi.org/10.17650/1994-4098-2025-21-2-60-68
Abstract
Breast cancer (BC) is one of the most common forms of malignant neoplasms among women and is the leading cause of cancer-related mortality. This complex and heterogeneous disease is formed depending on the presence of overexpression of various receptors on the surface of tumor cells. Despite significant advances in the therapy of early and metastatic BC, many patients continue to demonstrate disease progression against the background of traditional treatment methods, which indicates immunosuppression or a defect in the immune system.
The aim of this work is to review the scientific literature on the main mechanisms of antitumor immunity in patients with BC and the prospects for the use of immunotherapy.
Previously, BC was not considered a particularly immunogenic tumor, but new data show that different tumor subtypes can exhibit immunogenicity, which opens up new prospects for the use of immune checkpoint inhibitors. Features of the tumor immune microenvironment and the presence of tumor infiltrating lymphocytes are becoming important markers that help predict responses to immunotherapy. The effectiveness of such approaches is demonstrated by clinical studies, where the use of immune checkpoint inhibitors in combination with chemotherapy has shown an improvement in the response to therapy. Such studies confirm that even in cases where there is a residual tumor after neoadjuvant treatment, the use of immunotherapy can increase survival. From the presented analysis of literature sources, it follows that BC carcinogenesis is accompanied by suppression of the antitumor activity of the immune system. Quantitative analysis of various predictors allows us to determine the effectiveness of immune drugs. Thus, given the diversity of BC subtypes and many factors affecting the effectiveness of treatment, it becomes obvious that careful patient selection and a personalized approach to immunotherapy are necessary to achieve optimal results. In the future, research in the field of biomarkers should be continued to better predict the response to immunotherapy and minimize adverse effects.
About the Author
A. V. SultanbaevRussian Federation
Aleksandr Valeryevich Sultanbaev
73 / 1 Prospekt Oktyabrya, Ufa 450054
74 Gafuri St., Ufa 450076, Republic of Bashkortostan
3 Lenina St., Ufa 450008, Republic of Bashkortostan
Competing Interests:
The author declares no conflict of interest
References
1. Siegel R.L., Giaquinto A.N., Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024;74(1):12–49. DOI: 10.3322/caac.21820. Erratum in: CA Cancer J Clin 2024;74(2):203. DOI: 10.3322/caac.21830
2. Curigliano G., Burstein H.J., Gnant M. et al. Understanding breast cancer complexity to improve patient outcomes: The St Gallen International Consensus Conference for the Primary Therapy of Individuals with Early Breast Cancer 2023. Ann Oncol 2023;34(11):970–86. DOI: 10.1016/j.annonc.2023.08.017. Erratum in: Ann Oncol 2025;36(3):351. DOI: 10.1016/j.annonc.2024.11.001
3. Ji G., Liu J., Zhao Z. et al. Polyamine anabolism promotes chemotherapy-induced breast cancer stem cell enrichment. Adv Sci (Weinh) 2024;11(40):e2404853. DOI: 10.1002/advs.202404853
4. Davis A., Gao R., Navin N. et al. Tumor evolution: Linear, branching, neutral or punctuated? Biochim Biophys Acta Rev Cancer 2017;1867:151–61. DOI: 10.1016/j.bbcan.2017.01.003
5. Bagchi S., Yuan R., Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol 2021;16:223–49. DOI: 10.1146/annurev-pathol-042020-042741
6. Nayak L., Iwamoto F.M., LaCasce A. et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 2017;129(23):3071–3. DOI: 10.1182/blood-2017-01-764209
7. Le D.T., Uram J.N., Wang H. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372(26):2509–20. DOI: 10.1056/NEJMoa1500596
8. Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science 2018;359(6382):1350–5. DOI: 10.1126/science.aar4060
9. Fridman W.H., Pagès F., Sautès-Fridman C., Galon J. The immune contexture in human tumours: Impact on clinical outcome. Nat Rev Cancer 2012;12(4):298–306. DOI: 10.1038/nrc3245
10. Shi J., Pan L., Ma F. et al. Thematic trends and knowledge-map of tumor-infiltrating lymphocytes in breast cancer: A scientometric analysis. Front Oncol 2024;14:1438091. DOI: 10.3389/fonc.2024.1438091
11. Thomas N., Garaud S., Langouo M. et al. Tumor-infiltrating lymphocyte scoring in neoadjuvant-treated breast cancer. Cancers (Basel) 2024;16(16):2895. DOI: 10.3390/cancers16162895
12. Schmid P., Cortes J., Dent R. et al. KEYNOTE-522: Phase III study of neoadjuvant pembrolizumab + chemotherapy vs. placebo + chemotherapy, followed by adjuvant pembrolizumab vs. placebo for early-stage TNBC. Ann Oncol 2021;32:1198–200. DOI: 10.1016/j.annonc.2021.06.014
13. Cortes J., Cescon D.W., Rugo H.S. et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo- controlled, double-blind, phase 3 clinical trial. Lancet 2020;396:1817–28. DOI: 10.1016/S0140-6736(20)32531-9
14. Schmid P., Cortés J., Dent R. et al. Pembrolizumab or placebo plus chemotherapy followed by pembrolizumab or placebo for early- stage TNBC: Updated EFS results from the phase III KEYNOTE-522 study. Ann Oncol 2023;34:S1256, S1257. DOI: 10.1016/j.annonc.2023.10.008
15. Dvir K., Giordano S., Leone J.P. Immunotherapy in breast cancer. Int J Mol Sci 2024;25(14):7517. DOI: 10.3390/ijms25147517
16. Barroso-Sousa R., Jain E., Cohen O. et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol 2020;31(3):387–94. DOI: 10.1016/j.annonc.2019.11.010
17. Barroso-Sousa R., Keenan T.E., Pernas S. et al. Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin Cancer Res 2020;26(11):2565–72. DOI: 10.1158/1078-0432.CCR-19-3507
18. Karn T., Denkert C., Weber K.E. et al. Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann Oncol 2020;31(9):1216–22. DOI: 10.1016/j.annonc.2020.05.015
19. O’Meara T.A., Tolaney S.M. Tumor mutational burden as a predictor of immunotherapy response in breast cancer. Oncotarget 2021;12(5):394–400. DOI: 10.18632/oncotarget.27877
20. Lynce F., Xiu J., Obeid E. et al. Tumor mutational load in gynecological and breast cancer. J Clin Oncol 2017;35(Suppl 7S): abstr. 44.
21. Qin T., Zeng Y.D., Qin G. et al. High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget 2015;6(32):33972–81. DOI: 10.18632/oncotarget.5583
22. Peshkin B.N., Alabek M.L., Isaacs C. BRCA1/2 mutations and triple negative breast cancers. Breast Dis 2010;32(1–2):25–33. DOI: 10.3233/BD-2010-0306
23. Gupta T., Vinayak S., Telli M. Emerging strategies: PARP inhibitors in combination with immune checkpoint blockade in BRCA1 and BRCA2 mutation-associated and triple-negative breast cancer. Breast Cancer Res Treat 2023;197(1):51–6. DOI: 10.1007/s10549-022-06780-4
24. Zheng Q., Zhou T., Ding W. Efficacy and safety of PARPis combined with an ICIs for advanced or metastatic triple-negative breast cancer: A single-arm meta-analysis. Clin Exp Metastasis 2024;41(6):843–50. DOI: 10.1007/s10585-024-10307-0
25. Nanda R., Liu M.C., Yau C. et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: An analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol 2020;6(5):676–84. DOI: 10.1001/jamaoncol.2019.6650
26. Schmid P., Cortes J., Pusztai L. et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med 2020;382(9):810–21. DOI: 10.1056/NEJMoa1910549
27. Mittendorf E.A., Zhang H., Barrios C.H. et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet 2020;396(10257):1090–100. DOI: 10.1016/S0140-6736(20)31953-X
28. Tarantino P., Corti C., Schmid P. et al. Immunotherapy for early triple negative breast cancer: Research agenda for the next decade. NPJ Breast Cancer 2022;8(1):23. DOI: 10.1038/s41523-022-00386-1
29. Spring L.M., Fell G., Arfe A. et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: A comprehensive meta-analysis. Clin Cancer Res 2020;26(12):2838–48. DOI: 10.1158/1078-0432.CCR-19-3492
30. Tarantino P., Gandini S., Trapani D. et al. Immunotherapy addition to neoadjuvant chemotherapy for early triple negative breast cancer: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol 2021;159:103223. DOI: 10.1016/j.critrevonc.2021.103223
31. Symmans W.F., Peintinger F., Hatzis C. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 2007;25(28):4414–22. DOI: 10.1200/JCO.2007.10.6823
32. Pusztai L., Denkert C., O’Shaughnessy J. et al. Event-free survival by residual cancer burden after neoadjuvant pembrolizumab + chemotherapy versus placebo + chemotherapy for early TNBC exploratory analysis from KEYNOTE-522. J Clin Oncol 2022;40(Suppl 16):503. DOI: 10.1200/JCO.2022.40.16_suppl.503
33. Pusztai L., Denkert C., O’Shaughnessy J. et al. Event-free survival by residual cancer burden with pembrolizumab in early-stage TNBC: Exploratory analysis from KEYNOTE-522. Ann Oncol 2024;35(5):429–36. DOI: 10.1016/j.annonc.2024.02.002
34. Schlam I., Dower J., Lynce F. Addressing residual disease in HER2- positive and triple-negative breast cancer: What is next? Curr Oncol Rep 2024;26(4):336–45. DOI: 10.1007/s11912-024-01501-0 35. Cortes J., Rugo H.S., Cescon D.W. et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med 2022;387(3):217–26. DOI: 10.1056/NEJMoa2202809
35. Emens L.A., Adams S., Barrios C.H. et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann Oncol 2021;32(8):983–93. DOI: 10.1016/j.annonc.2021.05.355. Erratum in: Ann Oncol 2021;32(10):1308. DOI: 10.1016/j.annonc.2021.07.013. Erratum in: Ann Oncol 2021;32(12):1650. DOI: 10.1016/j.annonc.2021.10.002
36. Miles D., Gligorov J., André F. et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann Oncol 2021;32(8):994–1004. DOI: 10.1016/j.annonc.2021.05.801
37. Loibl S., Poortmans P., Morrow M. et al. Breast cancer. Lancet 2021;397(10286):1750–69. DOI: 10.1016/S0140-6736(20)32381-3. Erratum in: Lancet 2021;397(10286):1710. DOI: 10.1016/S0140-6736(21)00838-2
38. Novikova E.A., Kostromina O.V., Medvedev A.A. Age-related features of the distribution of the incidence of luminal B subtype breast cancer. Universitetskaya meditsina Urala = University Medicine of the Urals 2023;(9):12–4. (In Russ.). DOI: 10.36361/24129445_2023_9_2_12
39. Goldberg J., Pastorello R.G., Vallius T. et al. The immunology of hormone receptor positive breast cancer. Front Immunol 2021;12:674192. DOI: 10.3389/fimmu.2021.674192
40. Cha S.M., Park J.W., Lee Y.J. et al. SPP1+ macrophages in HR+ breast cancer are associated with tumor-infiltrating lymphocytes. NPJ Breast Cancer 2024;10(1):83. DOI: 10.1038/s41523-024-00695-7
41. Chulkova S.V., Sholokhova E.N., Poddubnaya I.V. et al. Immunophenotypic features of molecular subtypes of breast cancer. Meditsinskiy alfavit = Medical Alphabet 2022;(26):20–6. (In Russ.). DOI: 10.33667/2078-5631-2022-26-20-26
42. Savas P., Salgado R., Denkert C. et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol 2016;13(4):228–41. DOI: 10.1038/nrclinonc.2015.215
43. Hrubesz G., Leigh J., Ng T.L. Understanding the relationship between breast cancer, immune checkpoint inhibitors, and gut microbiota: A narrative review. Transl Breast Cancer Res 2024;5:31. DOI: 10.21037/tbcr-24-14
44. Barroso-Sousa R., Li T., Damania A.V. et al. Gut microbiome signatures correlate with overall survival among patients receiving eribulin with or without pembrolizumab for hormone receptor- positive metastatic breast cancer. Cancer Res 2023;83:PD11-05. DOI: 10.1158/1538-7445.SABCS22-PD11-05
45. Teng N., Dalby M.J., Kiu R. et al. Gut and oral microbiota profiling in patients (pts) with hormone receptor-positive (HR+) metastatic breast cancer (MBC) receiving pembrolizumab (P) plus eribulin (E): CALADRIO. Ann Oncol 2022;33:S129–30. DOI: 10.1016/j.annonc.2022.03.029
46. Masuda J., Sakai H., Tsurutani J. et al. Efficacy, safety, and biomarker analysis of nivolumab in combination with abemaciclib plus endocrine therapy in patients with HR-positive HER2-negative metastatic breast cancer: A phase II study (WJOG11418B NEWFLAME trial). J Immunother Cancer 2023;11(9):e007126. DOI: 10.1136/jitc-2023-007126
47. Stanton S.E., Adams S., Disis M.L. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: A systematic review. JAMA Oncol 2016;2(10):1354–60. DOI: 10.1001/jamaoncol.2016.1061
48. Cardoso F., McArthur H., Schmid P. et al. LBA21 KEYNOTE-756: Phase III study of neoadjuvant pembrolizumab (pembro) or placebo (pbo) + chemotherapy (chemo), followed by adjuvant pembro or pbo + endocrine therapy (ET) for early-stage high-risk ER+/ HER2– breast cancer. Ann Oncol 2023;34(Suppl 2):S1260, S1261. DOI: 10.1016/j.annonc.2023.10.011
49. Schlam I., Corti C., Sammons S. et al. Checkpoint inhibition for early-stage hormone receptor-positive breast cancer. Expert Opin Biol Ther 2024;24(6):511–20. DOI: 10.1080/14712598.2024.2370395
50. Loi S., Curigliano G., Salgado R.F. et al. A randomized, double- blind trial of nivolumab (NIVO) vs. placebo (PBO) with neoadjuvant chemotherapy (NACT) followed by adjuvant endocrine therapy (ET) ± NIVO in patients (pts) with high-risk, ER+ HER2– primary breast cancer (BC) Ann Oncol 2023;34:S1259, S1260. DOI: 10.1016/j.annonc.2023.10.010
51. Nanda R., Liu M.C., Yau C. et al. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): Results from I-SPY 2. Available at: http://ascopubs.org/doi/abs/10.1200/ JCO.2017.35.15_suppl.506.
52. Goel S., DeCristo M.J., Watt A.C. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017;548(7668):471–5. DOI: 10.1038/nature23465
53. Schaer D.A., Beckmann R.P., Dempsey J.A. et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep 2018;22(11):2978–94. DOI: 10.1016/j.celrep.2018.02.053
54. Rugo H.S., Kabos P., Beck J.T. et al. A phase Ib study of abemaciclib in combination with pembrolizumab for patients with hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2–) locally advanced or metastatic breast cancer (MBC) (NCT02779751): Interim result. J Clin Oncol 2020;38:1051. DOI: 10.1200/JCO.2020.38.15_suppl.1051
55. Hoolehan W., Harris J.C., Byrum J.N. et al. An updated definition of V(D)J recombination signal sequences revealed by high- throughput recombination assays. Nucleic Acids Res 2022;50(20):11696–711. DOI: 10.1093/nar/gkac1038
56. Davydova N.V., Prodeus A.P., Obraztsov I.V. et al. Reference values for TREC and KREC concentrations in adults. Vrach = Doctor 2021;32(6):21–8. (In Russ.). DOI: 10.29296/25877305-2021-06-05
57. Obraztsov I.V., Gordukova M.A., Severina N.A. et al. Excision rings of V(D)J recombination of B- and T-cells as a prognostic marker in B-cell chronic lymphocytic leukemia. Klinicheskaya onkogematologiya = Clinical Oncohematology 2017;10(2):131–40. (In Russ.). DOI: 10.21320/2500-2139-2017-10-2-131-140
Review
For citations:
Sultanbaev A.V. Predictors of the formation of antitumor immunity in breast cancer patients and the analysis of the results of the use of immune checkpoint inhibitors. Tumors of female reproductive system. 2025;21(2):60-68. (In Russ.) https://doi.org/10.17650/1994-4098-2025-21-2-60-68