Multimodal optical coherence tomography of breast tissue in clarifying diagnostics of early forms of breast cancer: analysis of clinical cases
https://doi.org/10.17650/1994-4098-2025-21-3-68-81
Abstract
Efficient multimodal diagnostics of tumor type and intraoperative assessment of resection margins purity are the main indicators for reducing the risk of local recurrence after organ-preserving surgery (OPS) in patients with early breast cancer. The use of new high-resolution imaging techniques, an integrated approach to data analysis and numerical image processing will improve the overall efficiency of diagnostics and surgical treatment of tumors at early stages. The objective of the presented clinical observations was to demonstrate the advantages of an integrated approach to breast cancer diagnostics, which includes, in addition to standard ultrasound elastography, tissue examination by multimodal optical coherence tomography (OCT) in the modes of visualizing the structure and calculating tissue stiffness.
We demonstrate clinical examples of two malignant breast tumors with a similar diagnosis of “invasive cancer of a nonspecific type, moderate malignancy, T1–2N0M0”. The patients underwent preoperative standard ultrasound examination and subsequent OPS with additional intraoperative multimodal OCT in the modes of structural OCT with visualization of the attenuation coefficient and OCT-elastography with calculation of Young modulus in kilopascals. The examples of a tumor that was erroneously classified as benign according to the results of preoperative compression ultrasound elastography and another tumor that was correctly classified as malignant are considering. Post-operative tissue examination using multimodal OCT allowed us to establish that both cases demonstrate features of malignancy: quantitative processing of structural OCT images of the mammary gland tissues revealed a decrease in the attenuation coefficient of the OCT signal (<4 mm–1) in both cases, which is typical for tumor tissue; stiffness maps constructed from the OCT data demonstrated high stiffness values (>400 kPa), which indicated the presence of tumor cells / tissue in both cases, which was confirmed by histological examination. It has been established that, compared with ultrasound elastography and structural OCT, OCT-elastography method allows more accurate determination of malignant tumors and clear visualization of the boundary between non-tumor and tumor tissues of the mammary gland.
Multimodal OCT with complex calculation of the OCT signal attenuation coefficient and stiffness values has a certain potential for improving the intraoperative assessment of tumor structure features and determining the resection margins of breast cancer in OPS.
About the Authors
D. A. VorontsovRussian Federation
11 / 1 Delovaya St., Nizhny Novgorod 603126
Competing Interests:
The authors declare no conflict of interest.
E. V. Gubarkova
Russian Federation
Ekaterina Vladimirovna Gubarkova
10 / 1 Ploshchad Minina and Pozharskogo, Nizhny Novgorod 603950
Competing Interests:
The authors declare no conflict of interest.
A. A. Kiseleva
Russian Federation
10 / 1 Ploshchad Minina and Pozharskogo, Nizhny Novgorod 603950
Competing Interests:
The authors declare no conflict of interest.
A. A. Sovetsky
Russian Federation
46 Ulyanova St., Nizhny Novgorod 603950
Competing Interests:
The authors declare no conflict of interest.
V. Yu. Zaitsev
Russian Federation
46 Ulyanova St., Nizhny Novgorod 603950
Competing Interests:
The authors declare no conflict of interest.
S. S. Kuznetsov
Russian Federation
11 / 1 Delovaya St., Nizhny Novgorod 603126
Competing Interests:
The authors declare no conflict of interest.
P. A. Buday
Russian Federation
11 / 1 Delovaya St., Nizhny Novgorod 603126
Competing Interests:
The authors declare no conflict of interest.
M. A. Sirotkina
Russian Federation
10 / 1 Ploshchad Minina and Pozharskogo, Nizhny Novgorod 603950
Competing Interests:
The authors declare no conflict of interest.
S. V. Gamayunov
Russian Federation
11 / 1 Delovaya St., Nizhny Novgorod 603126
Competing Interests:
The authors declare no conflict of interest.
A. G. Manikhas
Russian Federation
70 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg 197758
Competing Interests:
The authors declare no conflict of interest.
References
1. Malignant neoplasms in Russia in 2021 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinskiy, A.O. Shakhzadova. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMIRTS radiologii” Minzdrava Rossii, 2021. P. 237. (In Russ.).
2. Cancer Factsheets. Available at: https://gco.iarc.who.int/today/en/fact-sheets-cancers.
3. Gradishar W.J., Moran M.S., Abraham J. et al. Breast Cancer, Version 3.2024. NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2024;22(5):331–57. DOI: 10.6004/jnccn.2024.0035
4. Yarso K.Y., Ardianti M., Azmiardi A. et al. Strong factors to preserve breast in surgery preferences among Javanese ethnicities of breast cancer patients. Asian Pac J Cancer Prev 2024;25(11):3823–9. DOI: 10.31557/APJCP.2024.25.11.3823
5. Marinovich M.L., Noguchi N., Morrow M. et al. Changes in reoperation after publication of consensus guidelines on margins for breast-conserving surgery: A systematic review and meta-analysis. JAMA Surg 2020;155(10):e203025. DOI: 10.1001/jamasurg.2020.3025
6. Kuritzky A., Reyna C., McGuire K.P. et al. Evaluation of 2014 margin guidelines on re-excision and recurrence rates after breast conserving surgery: A multi-institution retrospective study. Breast 2020;51:29–33. DOI: 10.1016/j.breast.2020.02.013
7. Pareja F., Bhargava R., Borges V.F. et al. Unraveling complexity and leveraging opportunities in uncommon breast cancer subtypes. NPJ Breast Cancer 2025;11(1):6. DOI: 10.1038/s41523-025-00719-w
8. Liu H., He Y., Wang T., Xin S. Diagnostic value of ultrasound elastography in benign and malignant breast cancer nodules. Minerva Surg 2024;79(6):669–72. DOI: 10.23736/S2724-5691.24.10523-0
9. Chervenkov L., Georgiev A., Doykov M., Velikova T. Breast cancer imaging-clinical experience with two-dimensional-shear wave elastography: A retrospective study. World J Radiol 2024;16(10):528–36. DOI: 10.4329/wjr.v16.i10.528
10. Kubota K., Nakashima K., Nakashima K. et al. The Japanese Breast Cancer Society Clinical Practice Guidelines for Breast Cancer Screening and Diagnosis, 2022 edition. Breast Cancer 2024;31(2):157–64. DOI: 10.1007/s12282-023-01521-x. Erratum in: Breast Cancer 2024;31(2):165. DOI: 10.1007/s12282-023-01533-7
11. Gubarkova E.V., Sovetsky A.A., Vorontsov D.A. et al. Compression optical coherence elastography versus strain ultrasound elastography for breast cancer detection and differentiation: pilot study. Biomed Opt Express 2022;13(5):2859–81. DOI: 10.1364/BOE.451059
12. Dowling G.P., Hehir C.M., Daly G.R. et al. Diagnostic accuracy of intraoperative methods for margin assessment in breast cancer surgery: A systematic review and meta-analysis. Breast 2024;76:103749. DOI: 10.1016/j.breast.2024.103749
13. Tamanuki T., Namura M., Aoyagi T. et al. Effect of intraoperative imprint cytology followed by frozen section on margin assessment in breast-conserving surgery. Ann Surg Oncol 2021;28(3):1338–46. DOI: 10.1245/s10434-020-08955-z
14. Streeter S.S., Zuurbier R.A., di Florio-Alexander R.M. et al. Breast-conserving surgery margin guidance using micro-computed tomography: Challenges when imaging radiodense resection specimens. Ann Surg Oncol 2023;30(7):4097–108. DOI: 10.1245/s10434-023-13364-z
15. Lizio M.G., Liao Z., Shipp D.W. et al. Combined total internal reflection AF spectral-imaging and Raman spectroscopy for fast assessment of surgical margins during breast cancer surgery. Biomed Opt Express 2021;12(2):940–54. DOI: 10.1364/BOE.411648
16. Pop C.F., Veys I., Bormans A. et al. Fluorescence imaging for realtime detection of breast cancer tumors using IV injection of indocyanine green with non-conventional imaging: A systematic review of preclinical and clinical studies of perioperative imaging technologies. Breast Cancer Res Treat 2024;204(3):429–42. DOI: 10.1007/s10549-023-07199-1
17. David S., Tavera H., Trang T. et al. Macroscopic inelastic scattering imaging using a hyperspectral line-scanning system identifies invasive breast cancer in lumpectomy and mastectomy specimens. J Biomed Opt 2024;29(6):065004. DOI: 10.1117/1.JBO.29.6.065004
18. Zhang S., Yang B., Yang H. et al. Potential rapid intraoperative cancer diagnosis using dynamic full-field optical coherence tomography and deep learning: A prospective cohort study in breast cancer patients. Sci Bull (Beijing) 2024;69(11):1748–56. DOI: 10.1016/j.scib.2024.03.061
19. Vorontsov D.A., Gubarkova E.V., Sirotkina M.A. et al. Multimodal optical coherence tomography for intraoperative evaluation of tumor margins and surgical margins in breast-conserving surgery. Sovrem Tekhnologii Med 2022;14(2):26–38. DOI: 10.17691/stm2022.14.2.03
20. Schmidt H., Connolly C., Jaffer S. et al. Evaluation of surgically excised breast tissue microstructure using wide-field optical coherence tomography. Breast J 2020;26(5):917. DOI: 10.17691/stm2022.14.2.0323
21. Liu X., Cui M., Feng C. et al. Clinical evaluation of breast cancer tissue with optical coherence tomography: Key findings from a large-scale study. J Cancer Res Clin Oncol 2025;151(2):83. DOI: 10.1007/s00432-025-06125-w
22. Sanderson R.W., Zilkens R., Gong P. et al. A co-registration method to validate in vivo optical coherence tomography in the breast surgical cavity. Heliyon 2024;11(1):e41265. DOI: 10.1016/j.heliyon.2024.e41265
23. Morrow M., Van Zee K.J., Solin L.J. et al. Society of Surgical Oncology-American Society for Radiation Oncology–American Society of Clinical Oncology Consensus Guideline on margins for breast-conserving surgery with whole-breast irradiation in ductal carcinoma in situ. Pract Radiat Oncol 2016;6(5):287–95. DOI: 10.1016/j.prro.2016.06.011
24. Kennedy B.F., McLaughlin R.A., Kennedy K.M. et al. Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue. Cancer Res 2015;75(16):3236–45. DOI: 10.1158/0008-5472.CAN-14-3694
25. South F.A., Chaney E.J., Marjanovic M. et al. Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography. Biomed Opt Express 2014;5(10):3417–26. DOI: 10.1364/BOE.5.003417
26. Patel R., Khan A., Quinlan R. et al. Polarization-sensitive multimodal imaging for detecting breast cancer. Cancer Res 2014;74(17):4685–93. DOI: 10.1158/0008-5472.CAN-13-2411
27. Foo K.Y., Chin L., Zilkens R. et al. Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast. J Biophotonics 2020;13(6):e201960201. DOI: 10.1002/jbio.201960201
28. Gubarkova E., Kiseleva E., Moiseev A. et al. Intraoperative assessment of breast cancer tissues after breast-conserving surgery based on mapping the attenuation coefficients in 3D crosspolarization optical coherence tomography. Cancers (Basel) 2023;15(9):2663. DOI: 10.3390/cancers15092663
29. Allen W.M., Kennedy K.M., Fang Q. et al. Wide-field quantitative micro-elastography of human breast tissue. Biomed Opt Express 2018;9(3):1082–96. DOI: 10.1364/BOE.9.001082
30. Gubarkova E.V., Sovetsky A.A., Zaitsev V.Y. et al. OCTelastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes. Biomed Opt Express 2019;10(5):2244–63. DOI: 10.1364/BOE.10.002244
31. Tang L., Wang Y., Chen P. et al. Clinical use and adjustment of ultrasound elastography for breast lesions followed WFUMB guidelines and recommendations in the real world. Front Oncol 2022;12:1022917. DOI: 10.3389/fonc.2022.1022917
32. Zarcaro C., Orlando A.A.M., Ferraro F. et al. Breast multiparametric ultrasound: A single-center experience. J Ultrasound 2024;27(4):831–9. DOI: 10.1007/s40477-024-00944-2
33. Mutala T.M., Mwango G.N., Aywak A. et al. Determining the elastography strain ratio cut off value for differentiating benign from malignant breast lesions: Systematic review and meta-analysis. Cancer Imaging 2022;22(1):12. DOI: 10.1186/s40644-022-00447-5
34. Kokubu Y., Yamada K., Tanabe M. et al. Evaluating the usefulness of breast strain elastography for intraductal lesions. J Med Ultrason 2021;48(1):63–70. DOI: 10.1007/s10396-020-01070-2
35. Gelikonov V.M., Romashov V.N., Shabanov D.V. et al. Crosspolarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system. Radiophysics Quantum Electronics 2018;60:897–911. DOI: 10.1007/s11141-018-9856-9
36. Moiseev A.A., Gelikonov G.V., Terpelov D.A et al. Noniterative method of reconstruction optical coherence tomography images with improved lateral resolution in semitransparent media. Laser Phys Lett 2013;10:125601. DOI: 10.1088/1612-2011/10/12/125601
37. Kiseleva E.B., Yashin K.S., Moiseev A.A. et al. Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection. Neurophotonics 2019;6(3):035003. DOI: 10.1117/1.NPh.6.3.035003
38. Moiseev A., Sherstnev E., Kiseleva E. et al. Depth-resolved method for attenuation coefficient calculation from optical coherence tomography data for improved biological structure visualization. J Biophotonics 2023;16(12):e202100392. DOI: 10.1002/jbio.202100392
39. Vermeer K.A., Mo J., Weda J.J. et al. Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography. Biomed Opt Express 2013;5(1):322–37. DOI: 10.1364/BOE.5.000322.
40. Zaitsev V.Y., Matveyev A.L., Matveev L.A. et al. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography. J Biomed Opt 2016;21(11):116005. DOI: 10.1117/1.JBO.21.11.116005
41. Zaitsev V.Y., Matveyev A.L., Matveev L.A. et al. Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking. J Biophotonics 2016;9(5):499–509. DOI: 10.1002/jbio.201500203
42. Matveyev A.L., Matveev L.A., Sovetsky A.A. et al. Vector method for strain estimation in phase-sensitive optical coherence elastography. Laser Phys Lett 2018;15:065603. DOI: 10.1088/1612-202X/aab5e9
43. Sovetsky A.A., Matveyev A.L., Matveev L.A. et al. Manuallyoperated compressional optical coherence elastography with effective aperiodic averaging: Demonstrations for corneal and cartilaginous tissues. Laser Phys Lett 2018;15:085602. DOI: 10.1088/1612-202X/aac879
44. Sovetsky A.A., Matveyev A.L., Matveev L.A. et al. Full-optical method of local stress standardization to exclude nonlinearityrelated ambiguity of elasticity estimation in compressional optical coherence elastography. Laser Phys Lett 2020;17:065601. DOI: 10.1088/1612-202X/ab8794
45. Zaitsev V.Y., Ksenofontov S.Y., Sovetsky A.A. et al. Real-time strain and elasticity imaging in phase-sensitive optical coherence elastography using a computationally efficient realization of the vector method. Photonics 2021;8(12):527. DOI: 10.3390/photonics8120527
46. Zaitsev V.Y., Matveyev A.L., Matveev L.A. et al. Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues. J Innov Opt Health Sci 2017;10:1742006. DOI: 10.1142/S1793545817420068
47. Gubarkova E.V., Sovetsky A.A., Matveev L.A. et al. Nonlinear elasticity assessment with optical coherence elastography for highselectivity differentiation of breast cancer tissues. Materials (Basel) 2022;15(9):3308. DOI: 10.3390/ma15093308
48. Faragalla H., Davoudi B., Nofech-Moses N. et al. The use of optical coherence tomography for gross examination and sampling of fixed breast specimens: A pilot study. Diagnostics (Basel) 2022;12(9):2191. DOI: 10.3390/diagnostics12092191
49. Erickson-Bhatt S.J., Simpson D.G., Boppart S.A. Statistical evaluation of reader variability in assessing the diagnostic performance of optical coherence tomography. J Biomed Opt 2020;25(11):116002. DOI: 10.1117/1.JBO.25.11.116002.
50. Bouma B.E., de Boer J.F., Huang D. et al. Optical coherence tomography. Nat Rev Methods Primers 2022;2:79. DOI: 10.1038/s43586-022-00162-2
51. Fan S., Zhang H., Meng Z. et al. Comparing the diagnostic efficacy of optical coherence tomography and frozen section for margin assessment in breast-conserving surgery: A meta-analysis. J Clin Pathol 2024;77(8):517–27. DOI: 10.1136/jcp-2024-209597
52. Qin J., An L. Optical coherence tomography for ophthalmology imaging. Adv Exp Med Biol 2021;3233:197–216. DOI: 10.1007/978-981-15-7627-0_10
53. Foo K.Y., Newman K., Fang Q. et al. Multi-class classification of breast tissue using optical coherence tomography and attenuation imaging combined via deep learning. Biomed Opt Express 2022;13(6):3380–400. DOI: 10.1364/BOE.455110
54. Zhu D., Wang J., Marjanovic M. et al. Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography. Biomed Opt Express 2021;12(5):3021–36. DOI: 10.1364/BOE.423026
55. Chang J.M., Won J.K., Lee K.B. et al. Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions. AJR Am J Roentgenol 2013;201(2):W347–56. DOI: 10.2214/AJR.12.10416
Review
For citations:
Vorontsov D.A., Gubarkova E.V., Kiseleva A.A., Sovetsky A.A., Zaitsev V.Yu., Kuznetsov S.S., Buday P.A., Sirotkina M.A., Gamayunov S.V., Manikhas A.G. Multimodal optical coherence tomography of breast tissue in clarifying diagnostics of early forms of breast cancer: analysis of clinical cases. Tumors of female reproductive system. 2025;21(3):68-81. (In Russ.) https://doi.org/10.17650/1994-4098-2025-21-3-68-81


































