Molecular stratification or clinical necessity? The role of dMMR status in endometrial cancer
https://doi.org/10.17650/1994-4098-2025-21-3-121-130
Abstract
Endometrial cancer (EC) is one of the most common malignant tumors of the female reproductive system. Traditional clinicopathological factors do not always adequately reflect tumor biology, making molecular stratification increasingly important. A key element of this approach is the assessment of mismatch repair deficiency (dMMR) and microsatellite instability (MSI).
Aim of this work is to summarize current evidence on the clinical value of dMMR testing in EC and to define when and in whom it should be performed.
dMMR / MSI tumors account for approximately 20–30 % of EC cases. Testing provides several critical benefits: 1) identification of a distinct molecular subtype with characteristic biological behavior and intermediate prognosis; 2) early diagnosis of Lynch syndrome, enabling timely preventive strategies for patients and their relatives; 3) guidance in therapeutic decision-making, since dMMR / MSI tumors are highly sensitive to PD-1 inhibitors. Current international guidelines recommend that all patients with newly diagnosed EC undergo dMMR testing, regardless of age, family history, or histological subtype. This universal approach improves risk stratification, allows identification of hereditary cancer syndromes, and ensures access to effective immunotherapy in recurrent or metastatic settings
Keywords
About the Authors
S. V. VtorushinRussian Federation
5 Kooperativnyy Pereulok, Tomsk 634009
Competing Interests:
The authors declare no conflict of interest.
L. A. Tashireva
Russian Federation
Ljubov Aleksandrovna Tashireva
5 Kooperativnyy Pereulok, Tomsk 634009
Competing Interests:
The authors declare no conflict of interest.
References
1. Gu B., Shang X., Yan M. et al. Variations in incidence and mortality rates of endometrial cancer at the global, regional, and national levels, 1990–2019. Gynecol Oncol 2021;161(2):573–80. DOI: 10.1016/j.ygyno.2021.01.036
2. Colombo N., Creutzberg C., Amant F. et al. ESMO-ESGOESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up. Ann Oncol 2016;27(1):16–41. DOI: 10.1093/annonc/mdv484
3. Cancer Genome Atlas Research Network, Kandoth C., Schultz N. et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497(7447):67–73. DOI: 10.1038/nature12113
4. Kommoss S., McConechy M.K., Kommoss F. et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann Oncol 2018;29(5):1180–8. DOI: 10.1093/annonc/mdy058
5. O’Malley D.M., Bariani G.M., Cassier P.A. et al. Pembrolizumab in patients with microsatellite instability-high advanced endometrial cancer: results from the KEYNOTE-158 Study. J Clin Oncol 2022;40(7):752–61. DOI: 10.1200/JCO.21.01874
6. Rossi L., Le Frere-Belda M.A., Laurent-Puig P. et al. Clinicopathologic characteristics of endometrial cancer in Lynch syndrome: a French multicenter study. Int J Gynecol Cancer 2017;27(5):953–60. DOI: 10.1097/IGC.0000000000000985
7. Concin N., Matias-Guiu X., Vergote I. et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma – update 2021. Int J Gynecol Cancer 2021;31(1):12–39. DOI: 10.1136/ijgc-2020-002230
8. Bhattacharya P., Leslie S.W., McHugh T.W. Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer). In: StatPearls. Treasure Island: StatPearls Publishing, 2025. Available at: https:// www.ncbi.nlm.nih.gov/books/NBK431096.
9. Geiersbach K.B., Samowitz W.S. Microsatellite instability and colorectal cancer. Arch Pathol Lab Med 2011;135(10): 1269–77. DOI: 10.5858/arpa.2011-0035-RA
10. Aaltonen L., Johns L., Järvinen H. et al. Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)deficient and MMR-stable tumors. Clin Cancer Res 2007;13(1):356–61. DOI: 10.1158/1078-0432.CCR-06-1256
11. Dondi G., Coluccelli S., de Le, A. et al. An analysis of clinical, surgical, pathological and molecular characteristics of endometrial cancer according to mismatch repair status. A multidisciplinary approach. Int J Mol Sci 2020;21:7188.
12. Evrard C., Alexandre J. Predictive and prognostic value of microsatellite instability in gynecologic cancer (endometrial and ovarian). Cancers 2021;13:2434. DOI: 10.3390/cancers13102434
13. Raffone A., Travaglino A., Mascolo M. et al. TCGA molecular groups of endometrial cancer: pooled data about prognosis. Gynecol Oncol 2019;155(2):374–83. DOI: 10.1016/j.ygyno.2019.08.019
14. Alexa M., Hasenburg A., Battista M.J. The TCGA Molecular Classification of Endometrial Cancer and its possible impact on adjuvant treatment decisions. Cancers 2021;13:1478.
15. Dobrzycka B., Terlikowska K.M., Kowalczuk O. et al. Prognosis of stage I endometrial cancer according to the FIGO 2023 Classification taking into account molecular changes. Cancers (Basel) 2024;16(2):390. DOI: 10.3390/cancers16020390
16. Kommoss S., McConechy M.K., Kommoss F. et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann Oncol 2018;29(5):1180–8. DOI: 10.1093/annonc/mdy058
17. Abu-Rustum N., Yashar C., Arend R. et al. Uterine Neoplasms, Version 1.2023, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2023;21:181–209. DOI: 10.6004/jnccn.2023.0006
18. Ledermann J.A., Matias-Guiu X., Amant F. et al. ESGO-ESMO-ESP consensus conference recommendations on ovarian cancer: pathology and molecular biology and early, advanced and recurrent disease. Ann Oncol 2024;35(3):248–66. DOI: 10.1016/j.annonc.2023.11.015
19. León-Castillo A., Britton H., McConechy M.K. et al. Interpretation of somatic POLE mutations in endometrial carcinoma. J Pathol 2020;250:323–35. DOI: 10.1002/path.5372
20. Sepulveda A.R., Hamilton S.R., Allegra C.J. et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med 2017;141(5):625–57. DOI: 10.5858/arpa.2016-0554-CP
21. Wang C., Zhang L., Vakiani E., Shia J. Detecting mismatch repair deficiency in solid neoplasms: immunohistochemistry, microsatellite instability, or both? Mod Pathol 2022;35(11):1515–28. DOI: 10.1038/s41379-022-01109-4
22. Kaneko E., Sato N., Sugawara T. et al. MLH1 promoter hypermethylation predicts poorer prognosis in mismatch repair deficiency endometrial carcinomas. J Gynecol Oncol 2021;32(6):e79.
23. Hussein Y.R., Weigelt B., Levine D.A. et al. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod Pathol 2015;28(4):505–14. DOI: 10.1038/modpathol.2014.143
24. Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn 2008;10(4):293–300. DOI: 10.2353/jmoldx.2008.080031
25. Wong Y.F., Cheung T.H., Lo K.W.K. et al. Detection of microsatellite instability in endometrial cancer: advantages of a panel of five mononucleotide repeats over the National Cancer Institute Panel of Markers. Carcinogenesis 2006;27:951–5.
26. Suraweera N., Duval A., Reperant M. et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 2002;123:1804–11.
27. Luchini C., Bibeau F., Ligtenberg M.J. et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol 2019;30(8):1232–43. DOI: 10.1093/annonc/mdz116
28. Chung Y., Nam S.K., Chang H.E. et al. Evaluation of an eight marker-panel including long mononucleotide repeat markers to detect microsatellite instability in colorectal, gastric, and endometrial cancers. BMC Cancer 2023;23:1100. DOI: 10.1186/s12885-023-11607-6
29. Salipante S.J., Scroggins S.M., Hampel H.L. et al. Microsatellite instability detection by next generation sequencing. Clin Chem 2014;60(9):1192–9. DOI: 10.1373/clinchem.2014.223677
30. Jia P., Yang X., Guo L. et al. MSIsensor-pro: fast, accurate, and matched-normal-sample-free detection of microsatellite instability. Genomics Proteomics Bioinformatics 2020;18(1):65–71. DOI: 10.1016/j.gpb.2020.02.001
31. Boyarskikh U., Kechin A., Khrapov E. et al. Detecting microsatellite instability in endometrial, colon, and stomach cancers using targeted NGS. Cancers (Basel) 2023;15(20):5065. DOI: 10.3390/cancers15205065
32. British Association of Gynaecological Pathologists (BAGP). BAGP Guidance for POLE testing in endometrial carcinoma. Version 1.2. 2022. Available at: https://www.thebagp.org/.
33. Kommoss S., Karnezis A.N., Gilks C.B. et al. Molecular classification of endometrial carcinoma: current status and future directions. ESMO Open 2024;9(1):101010. DOI: 10.1016/j.esmoop.2024.101010
34. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Uterine Neoplasms. Version 1.2024. Available at: https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf.
35. Raffone A., Travaglino A., Cerbone M. et al. Diagnostic accuracy of immunohistochemistry for mismatch repair proteins as surrogate of microsatellite instability molecular testing in endometrial cancer. Pathol Oncol Res 2020;26:1417–27.
36. Wortman B.G., Creutzberg C.L., Putter H. et al. Ten-year results of the PORTEC-2 Trial for high-intermediate risk endometrial carcinoma: improving patient selection for adjuvant therapy. Br J Cancer 2018;119:1067–74.
37. Suarez A.A., Chen W., Gillespie J. et al. Characterization of mismatch-repair/microsatellite instability-discordant endometrial cancers. Cancer 2024;130(3):385–99. DOI: 10.1002/cncr.35030
38. Cohen R., Hain E., Buhard O. et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol 2019;5:551–5.
39. Rüschoff J., Schildhaus H.U., Rüschoff J.H. et al. Testing for deficient mismatch repair and microsatellite instability. Pathologie 2023;44(Suppl 2):61–70. DOI: 10.1007/s00292-023-01208-2
40. Jaffrelot M., Fares N., Brunac A.C. et al. An unusual phenotype occurs in 15 % of mismatch repair-deficient tumors and is associated with non-colorectal cancers and genetic syndromes. Mod Pathol 2022;35:427–37. DOI: 10.1038/s41379-021-00918-3
41. Raffone A., Travaglino A., Raimondo D. et al. POLE-mutated and mismatch repair proficient endometrial carcinomas: clinicopathologic features and outcomes. Gynecol Oncol 2020;157(2):375–82. DOI: 10.1016/j.ygyno.2020.02.014
42. Nádorvári M.L., Lotz G., Kulka J. Microsatellite instability and mismatch repair protein deficiency: equal predictive markers? Pathol Oncol Res 2024;30:1611719. DOI: 10.3389/pore.2024.1611719
43. Stelloo E., Jansen A.M.L., Osse E.M. et al. Practical guidance for mismatch repair-deficiency testing in endometrial cancer. Ann Oncol 2017;28(1):96–102. DOI: 10.1093/annonc/mdw542
44. Ryan N.A.J., Morris J., Green K. et al. Association of mismatch repair mutation with age at cancer onset in Lynch syndrome: implications for stratified surveillance strategies. JAMA Oncol 2017;3(12):1702–6. DOI: 10.1001/jamaoncol.2017.0619
45. MacDonald N.D., Salvesen H.B., Ryan A. et al. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res 2000;60(6):1750–2.
46. Nelson G.S., Pink A., Lee S. et al. MMR deficiency is common in high-grade endometrioid carcinomas and is associated with an unfavorable outcome. Gynecol Oncol 2013;131(2):309–14. DOI: 10.1016/j.ygyno.2013.08.003
47. Travaglino A., Raffone A., Mascolo M. et al. TCGA molecular subgroups in endometrial undifferentiated/dedifferentiated carcinoma. Pathol Oncol Res 2020;26:1411–6.
48. Addante F., d’Amati A., Santoro A. et al. Mismatch repair deficiency as a predictive and prognostic biomarker in endometrial cancer: a review on immunohistochemistry staining patterns and clinical implications. Int J Mol Sci 2024;25(2):1056. DOI: 10.3390/ijms25021056
49. Cai Y., Han Q., Guo H. Identifying clinical features and molecular characteristics of the endometrial clear cell carcinoma. Front Oncol 2023;13:1286176. DOI: 10.3389/fonc.2023.1286176
50. Huvila J., Jamieson A., Pors J. et al. Endometrial carcinosarcomas are almost exclusively of p53abn molecular subtype after exclusion of mimics. Int J Gynecol Pathol 2024;43(5):506–14. DOI: 10.1097/PGP.0000000000001010
51. Yoshida H. Bridging the gap between guidelines and practice in Lynch syndrome screening for endometrial cancer. BMJ Oncol 2025;4(1):e000821. DOI: 10.1136/bmjonc-2025-000821
52. Concin N., Matias-Guiu X., Cibula D. et al. ESGO-ESTRO-ESP guidelines for the management of patients with endometrial carcinoma: update 2025. Lancet Oncol 2025;26(8):e423–35. DOI: 10.1016/S1470-2045(25)00167-6
53. Aiob A., Kim Y.R., Kim K. et al. A simplified two-marker immunohistochemistry strategy for Lynch syndrome screening in endometrial cancer patients. Obstet Gynecol Sci 2023;66(6):537–44. DOI: 10.5468/ogs.23124
54. Ryan P., Mulligan A.M., Aronson M. et al. Comparison of clinical schemas and morphologic features in predicting Lynch syndrome in mutation-positive patients with endometrial cancer encountered in the context of familial gastrointestinal cancer registries. Cancer 2012;118 681–8. DOI: 10.1002/cncr.26323
55. Wright J.D., Silver E.R., Tan S.X. et al. Cost-effectiveness analysis of genotype-specific surveillance and preventive strategies for gynecologic cancers among women with Lynch syndrome. JAMA Netw Open 2021;4(9):e2123616. DOI: 10.1001/jamanetworkopen.2021.23616
56. National Institute for Health and Care Excellence (NICE) testing strategies for Lynch syndrome in people with endometrial cancer. Diagnostics Guidance 2020.
57. Bhamidipati D., Subbiah V. Tumor-agnostic drug development in dMMR/MSI-H solid tumors. Trends Cancer 2023;9(10):828–39. DOI: 10.1016/j.trecan.2023.07.002
58. O’Malley D.M., Bariani G.M., Cassier P.A. et al. Pembrolizumab in patients with microsatellite instability–high advanced endometrial cancer: results from the KEYNOTE-158 study. J Clin Oncol 2022;40(7):752–61. DOI: 10.1200/JCO.21.01874
59. O’Malley D.M., Bariani G.M., Cassier P.A. et al. Pembrolizumab in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) and non-MSI-H/non-dMMR advanced endometrial cancer: phase 2 KEYNOTE-158 study results. Gynecol Oncol 2025;193:130–5. DOI: 10.1016/j.ygyno.2024.12.020
60. Makker V., Colombo N., Casado Herraez A. et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med 2022;386(5):437–48. DOI: 10.1056/NEJMoa2108330
61. Oaknin A., Gilbert L., Tinker A.V. et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/ MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: interim results from GARNET-a phase I, single-arm study. J Immunother Cancer 2022;10(1):e003777. DOI: 10.1136/jitc-2021-003777
62. Westin S.N., Moore K., Chon H.S. et al. Durvalumab plus carboplatin/paclitaxel followed by maintenance durvalumab with or without olaparib as first-line treatment for advanced endometrial cancer: the phase III DUO-E trial. J Clin Oncol 2024;42(3):283–99. DOI: 10.1200/JCO.23.02132. Erratum in: J Clin Oncol 2024;42(27):3262. DOI: 10.1200/JCO-24-01660
63. Colombo N., Biagioli E., Harano K. et al. Atezolizumab and chemotherapy for advanced or recurrent endometrial cancer (AtTEnd): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2024;25:1135–46. DOI: 10.1016/S1470-2045(24)00334-6
64. Mirza M.R., Chase D.M., Slomovitz B.M. et al. Dostarlimab for primary advanced or recurrent endometrial cancer. N Engl J Med 2023;388(23):2145–58. DOI: 10.1056/NEJMoa2216334
Review
For citations:
Vtorushin S.V., Tashireva L.A. Molecular stratification or clinical necessity? The role of dMMR status in endometrial cancer. Tumors of female reproductive system. 2025;21(3):121-130. (In Russ.) https://doi.org/10.17650/1994-4098-2025-21-3-121-130



































