Preview

Опухоли женской репродуктивной системы

Расширенный поиск

Новые потенциальные биомаркеры рака молочной железы (обзор литературы)

https://doi.org/10.17650/1994-4098-2014-0-3-8-13

Полный текст:

Аннотация

Идентификация маркеров, которые позволят выявить заболевание на ранней, доклинической стадии, является важной задачей протеомных исследований. Диагностические маркеры должны обладать высокой чувствительностью и специфичностью, быть легкодоступными для анализа в тканях или жидкостях организма, и прежде всего определяться в сыворотке/плазме крови. Раннее выявление маркеров рака молочной железы (РМЖ) в крови – это перспективное направление в науке, однако является технически сложной задачей из-за гетерогенности заболевания, широкого диапазона концентраций и вариабельности белков плазмы крови. Наш обзор посвящен теоретическим предпосылкам и практическим результатам поиска новых протеомных маркеров РМЖ.

Об авторах

М. А. Таипов
ФБГУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


Н. Е. Левченко
ФБГУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


К. П. Лактионов
ФБГУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


В. Е. Шевченко
ФБГУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


Список литературы

1. Давыдов М.И., Аксель Е.М. Статистика злокачественных новообразований в России и странах СНГ в 2009 г. Вестн РОНЦ им. Н.Н. Блохина РАМН 2011;22(3):172.

2. Шевченко В.Е., Таипов М.А., Ковалев С.В. и др. Картирование протеома лизата линии опухолевых клеток MCF-7 для идентификации потенциальных маркеров рака молочной железы. Опухоли женской репродуктивной системы 2012;(2):4–11.

3. Шевченко В.Е., Хасуева М., Поддубная И.В. и др. Масс-спектрометрическое профилирование низкомолекулярного протеома плазмы крови для обнаружения потенциальных маркеров рака молочной железы. Вестн РОНЦ им. Н.Н. Блохина РАМН 2011;22(3):27–33.

4. Шевченко В.Е., Таипов М.А., Ковалев С.В. и др., Анализ белков, ассоциированных с экспрессией циклооксигеназы-2 и биосинтезом PGE2 в клетках рака молочной железы с разным метастатическим потенциалом. Опухоли женской репродуктивной системы 2012;(3–4):19–29.

5. Dhakal H.P., Naume B., Synnestvedt M. et al. Expression of cyclooxygenase-2 in invasive breast carcinomas and its prognostic impact. Histol Histopathol 2012;27(10): 1315–25.

6. Sui W., Zhang Y., Wang Z. et al. Antitumor effect of a selective COX-2 inhibitor, celecoxib, may be attributed to angiogenesis inhibition through modulating the PTEN/PI3K/Akt/ HIF-1 pathway in an H22 murine hepatocarcinoma model. Oncol Rep 2014;31(5):2252–60.

7. Aka J.A., Lin S.X. Comparison of Functional Proteomic Analyses of Human Breast Cancer Cell Lines T47D and MCF7. PLoS One 2012;7(2):e31532.

8. Alo P.L., Visca P., Trombetta G. Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori 1999;85(1):35–40.

9. Quanri J. Yuan L.X., Boulbes D. et al. Fatty acid synthase phosphorylation: a novel therapeutic target in HER-2-overexpressing breast cancer cells. Breast Cancer Res 2010;12(6):R96.

10. Ishimura N., Amano Y., Sanchez-Siles A.A. et al. Fatty acid synthase expression in Barrett's esophagus: implications for carcinogenesis. J Clin Gastroenterol 2011;45(8):665–72.

11. Hix L.M., Karavitis J., Khan M.W. et al. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells. J Biol Chem 2013;288(17):11676–88.

12. Amoroso M.R., Matassa D.S., Laudiero G. et al. TRAP1 and the proteasome regulatory particle TBP7/Rpt3 interact in the endoplasmic reticulum and control cellular ubiquitination of specific mitochondrial proteins. Cell Death Differ 2012;19(4): 592–604.

13. Aust S., Bachmayr-Heyda A., Pateisky P. et al. Role of TRAP1 and estrogen receptor alpha in patients with ovarian cancer – a study of the OVCAD consortium. Mol Cancer 2012;11:69. 14. Frasor J., Weaver A.E., Pradhan M., Mehta K. Synergistic up-regulation of prostaglandin E synthase expression in breast cancer cells by 17 beta-estradiol and proinflammatory cytokines. Endocrinology 2008;149(12):6272–9.

14. Lee J.J., Natsuizaka M., Ohashi S. et al. Hypoxia activates the cyclooxygenase-2– prostaglandin E synthase axis. Carcinogenesis 2010;31(3):427–34.

15. Simpson N.E., Lambert W.M., Watkins R. et al. High levels of Hsp90 cochaperone p23 promote tumor progression and poor prognosis in breast cancer by increasing lymph node metastases and drug resistance. Cancer Res 2010;70(21):8446–56.

16. Tanioka T., Nakatani Y., Semmyo N. et al. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 2000;275(42):32775–82.

17. Wang T.H., Chao A., Tsai C.L. et al. Stressinduced phosphoprotein 1 as a secreted biomarker for human ovarian cancer promotes cancer cell proliferation. Mol Cell Proteomics 2010;9(9):1873–84.

18. Carper S.W., Rocheleau T.A., Storm FK. cDNA sequence of a human heat shock protein HSP27. Nucleic Acids Res 1990;18(21):6457.

19. Kang S.H., Kang K.W., Kim K.H. et al. Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her-2 protein stability. BMC Cancer 2008;8:286.

20. Grzegrzolka J., Kurnol K., Piotrow P. et al. Hsp-27 expression in invasive ductal breast carcinoma. Folia Histochem Cytobiol 2012;50(4):527–33.

21. Cayado-Gutiérrez N., Moncalero V.L., Rosales E.M. et al. Downregulation of Hsp27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress Chaperones 2013;18(2):243–9.

22. Sims J.T., Ganguly S.S., Bennett H. et al. Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One 2013;8(1):e55509.

23. Niemantsverdriet M., Wagner K., Visser M., Backendorf C. Cellular functions of 14-3-3 zeta in apoptosis and cell adhesion emphasize its oncogenic character. Oncogene 2008;27(9):1315–9.

24. Lu J., Guo H., Treekitkarnmongkol W. et al. 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 2009;16(3):195–207.

25. Neal C.L., Yao J., Yang W. et al. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival Cancer Res 2009;69(8):3425–32.

26. Neal C.L., Xu J., Li P. Overexpression of 14-3-3zeta in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene 2012;31(7):897–906.

27. Keum Y.S., Kim H.G., Bode A.M. et al. UVB-induced COX-2 expression requires histone H3 phosphorylation at Ser10 and Ser28. Oncogene 2013;32(4):444–52.

28. Qi W., Liu X., Chen W. et al. Overexpression of 14-3-3gamma causes polyploidization in H322 lung cancer cells. Mol Carcinog 2007;46(10):847–56.

29. Jin Y.H., Kim Y.J., Kim D.W. et al. Sirt2 interacts with 14-3-3 beta/gamma and downregulates the activity of p53. Biochem Biophys Res Commun 2008;368(3):690–5.

30. Radhakrishnan V.M., Martinez J.D. 14-3-3gamma induces oncogenic transformation by stimulating MAP kinase and PI3K signaling. PLoS One 2010;5(7):e11433.

31. Li Y., Inoki K., Yeung R. Guan K.L. Regulation of TSC2 by 14-3-3 binding. J Biol Chem 2002;277(47):44593–6.

32. Chen H., Liu L., Ma B. et al. Protein kinase A-mediated 14-3-3 association impedes human dapper1 to promote dishevelled degradation. J of Biol Chem 2011;286(17):14870–80.

33. Zhang H., Cicchetti G., Onda H. et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 2003;112(8): 1223–33.

34. Inoki K., Li Y., Zhu T. et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648–57.

35. Wu K.K., Liou J.Y. Cyclooxygenase inhibitors induce colon cancer cell apoptosis Via PPARdelta – > 14-3-3epsilon pathway. Methods Mol Biol 2009;512:295–307.

36. Moreira J.M., Shen T., Ohlsson G. et al. A combined proteome and ultrastructural localization analysis of 14-3-3 proteins in transformed human amnion (AMA) cells: definition of a framework to study isoformspecific differences. Mol Cell Proteomics 2008;7(7):1225–40.

37. Hodgkinson V.C., Agarwal V., ELFadl D. et al. Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer. J Proteomics 2012;75(9):2745–52.

38. Desai K.V. S100A6 as a biomarker in human breast cancer. Proc Am Assoc Cancer Res 2005;46:448.

39. Al-Haddad S., Zhang Z., Leygue E. et al. Psoriasin (S100A7) expression and invasive breast cancer. Am J Pathol 1999;155(6): 2057–66.

40. Moon A., Yong H.Y., Song J.I. et al. Global gene expression profiling unveils, S100A8/A9 as candidate markers in H-ras-mediated human breast epithelial cell invasion. Mol Cancer Res 2008;6(10):1544–53.

41. Li C., Chen H., Ding F. et al. A novel p53 target gene, S100A9, induces p53-dependent cellular apoptosis and mediates the p53 apoptosis pathway. Biochem J 2009;422(2):363–72.

42. Zhang J., Guo B., Zhang Y. et al. Silencing of the annexin II gene downregulates the levels of S100A10, c-Myc, and plasmin and inhibits breast cancer cell proliferation and invasion. Saudi Med J 2010;31(4):374–81.

43. Mc Kiernan E., McDermott E.W., Evoy D. et al. The role of S100 genes in breast cancer progression. Tumour Biol 2011;32(3):441–50.

44. Han C., Zhang H.T., Du L. et al. Serum levels of leptin, insulin, and lipids in relation to breast cancer in china. Endocrine2005;26(1):19–24.

45. Søiland H., Skaland I., Janssen E.A. et al. Comparison of apolipoprotein D determination methods in breast cancer. Anticancer Res 2008;28(2B):1151–60.

46. Zelco I.N., Mariani T.J., Folz R.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution and expression. Free Radic Biol Med 2002;33(3):337–49.

47. Rinaldi S., Peeters P.H., Berrino F. et al. IGF-I, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 2006;13(2): 593–605.

48. Osborne J.R., Port E., Gonen M. et al. 18F-FDG PET of locally invasive breast cancer and association of estrogen receptor status with standardized uptake value: microarray and immunohistochemical analysis. J Nucl Med 2010;51(4):543–9.

49. Vasseur S., Afzal S., Tardivel-Lacombe J. DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc Natl Acad Sci USA 2009;106(4):1111–6.

50. Verjans E., Noetzel E., Bektas N. et al. Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer 2009;9:230.

51. Leighton X., Srikantan V., Pollard H.B. et al. Significant allelic loss of ANX7 region (10q21) in hormone receptor negative breast carcinomas. Cancer Lett 2004;210(2): 239–44.

52. Walker L.C., Harris G.C., Holloway A.J. Cytokeratin KRT8/18 expression differentiates distinct subtypes of grade 3 invasive ductal carcinoma of the breast. Cancer Genet Cytogenet 2007;178(2):94–103.

53. Bühler H., Schaller G. Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Mol Cancer Res 2005;3(7):365–71.

54. Schaller G., Fuchs I., Pritze W. et al. Elevated keratin 18 protein expression indicates a favorable prognosis in patients with breast cancer. Clin Cancer Res 1996;2: 1879–85.

55. Mulligan A.M., Pinnaduwage D., Bane A.L. et al. CK8/18 expression, the basal phenotype, and family history in identifying BRCA1-associated breast cancer in the Ontario site of the breast cancer family registry. Cancer 2011;117(7):1350–9.

56. Ha S.A., Lee Y.S., Kim H.K. et al. The prognostic potential of keratin 18 in breast cancer associated with tumor dedifferentiation, and the loss of estrogen and progesterone receptors. Cancer Biomark 2011;10(5): 219–31.

57. Meng Y., Wu Z., Yin X. et al. Keratin 18 attenuates estrogen receptor alpha-mediated signaling by sequestering LRP16 in cytoplasm. BMC Cell Biol 2009;(10):96.


Для цитирования:


Таипов М.А., Левченко Н.Е., Лактионов К.П., Шевченко В.Е. Новые потенциальные биомаркеры рака молочной железы (обзор литературы). Опухоли женской репродуктивной системы. 2014;(3):8-13. https://doi.org/10.17650/1994-4098-2014-0-3-8-13

For citation:


Taipov M.A., Levchenko N.Y., Laktionov K.P., Shevchenko V.Y. New potential biomarkers for breast cancer (review of literature). Tumors of female reproductive system. 2014;(3):8-13. (In Russ.) https://doi.org/10.17650/1994-4098-2014-0-3-8-13

Просмотров: 260


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)