Preview

Tumors of female reproductive system

Advanced search

The clinical significance of breast cancer stem cells (review of literature)

https://doi.org/10.17650/1994-4098-2014-0-3-14-19

Abstract

For a long time, in oncology dominated the stochastic theory of onset and progression of tumors, which postulated that any cell malignant
tumor has tumorogenesis properties. However, currently there are more data indicating that the malignant tumors like normal tissues consist
of several subpopulations of cells of various degree of differentiation, including stem. Thus, the alternative stochastic theory became a hierarchical theory of carcinogenesis. Like normal stem cells, cancer stem cells have natural resistance to radiation and systemic drug therapy, and may become the reason of occurrence of relapses and metastases. In this review analysed data regarding the clinical significance of breast cancer stem cells.

About the Authors

I. B. Schepotin
A.A. Bogomolets National Medical University, Kiev, Ukraine
Ukraine


A. S. Zotov
A.A. Bogomolets National Medical University, Kiev, Ukraine
Ukraine


R. V. Lyubota
A.A. Bogomolets National Medical University, Kiev, Ukraine
Ukraine


N. F. Anikusko
Kiev Municipal Clinical Oncological Centre, Ukraine
Ukraine


I. I. Lyubota
Kiev Municipal Clinical Oncological Centre, Ukraine
Ukraine


References

1. Takahashi R.U., Takeshita F., Fujiwara T. et al. Cancer stem cells in breast cancer. Cancers (Basel) 2011;3(1):1311–28.

2. Battula V.K., Shi Y., Evans K.W. et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 2012;122(6):2066–78.

3. Croker A.K., Allan A.L. Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 2008;12(2):374–90.

4. Allan A.L., Vantyghem S.A., Tuck A.B. Chambers A.F. Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 2007;26:87–98.

5. Li F., Tiede B., Massague J. Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007;17(1):3–14.

6. Kucia M., Ratajczak M.Z. Stem cells as a two-edged sword – from regeneration to tumor formation. J Physiol Pharmacol 2006; 57 Suppl 7:5–16.

7. Seita J., Weissman I.L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010;2(6):640–53.

8. van der Flier L.G., Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009;71:241–60.

9. Fuchs E., Nowak J.A. Building epithelial tissues from skin stem cells. Cold Spring Harb Symp Quant Biol 2008;73:333–50.

10. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011;17(3):313–9.

11. Nguyen L.V., Vanner R., Dirks P., Eaves C.J. Cancer stem cells: an evolving concept. Nat Rev Cancer 2012;12(2):133–43.

12. Dick J.E. Stem cell concepts renew cancer research. Blood 2008;112(13):4793–807.

13. Bonnet D., Dick J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730–7.

14. Ginestier C., Hur M.H., Charafe-Jauffret E. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007;1(5):555–67.

15. Al-Hajj M., Wicha M.S., Benito-Hernandez A. et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100(7):3983–8.

16. Dalerba P., Dylla S.J., Park I.K. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007;104(24):10158–63.

17. O’Brien C.A., Pollett A., Gallinger S., Dick J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445(7123):106–10.

18. Huang E.H., Hynes M.J., Zhang T. et al. Aldehyde dehydrogenase1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009;69(8):3382–9.

19. Hermann P.C., Huber S.L., Herrler T. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007;1(3):313–23.

20. Li C., Heidt D.G., Dalerba P. et al. Identification of pancreatic cancer stem cells. Cancer Res 2007;67(3):1030–7.

21. Schatton T., Murphy G.F., Frank N.Y. et al. Identification of cells initiating human melanomas. Nature 008;451(7176):345–9.

22. Boiko A.D., Razorenova O.V., van de Rijn M. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 2010;466(7302):133–7.

23. He X.C., Zhang J., Li L. Cellular and molecular regulation of hematopoietic and intestinal stem cell behavior. Ann NY Acad Sci 2005;1049:28–38.

24. Park D., Sykes D.B., Scadden D.T. The hematopoietic stem cell niche. Front Biosci (Landmark Ed) 2012;17:30–9.

25. Li X., Lewis M.T., Huang J. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008;100(9):672–9.

26. Goldman J.M. Chronic myeloid leukemia: a historical perspective. Semin Hematol 2010;47(4):302–11.

27. Perrotti D., Jamieson C., Goldman J., Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 2010;120(7):2254–64.

28. Diehn M., Cho R.W., Lobo N.A. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009;458(7239):780–3.

29. Sharma S.V., Lee D.Y., Li B. et al. A chromatinmediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010;141(1):69–80.

30. Battula V.K., Shi Y., Evans K.W. et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 2012;122(6): 2066–78.

31. Yang G., Xue F., Chen X. Prognostic value of different amounts of cancer stem cells in different molecular subtypes of breast cancer. Gland Surg 2012;1(1):20–4.

32. Abraham B.K., Fritz P., McClellan M. et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 2005;11(3): 1154–9.

33. Yu F., Yao H., Zhu P. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131(6):1109–23.

34. Marcato P., Dean C.A., Pan D. et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 2011;29(1):32–45.

35. Gupta P.B., Onder T.T., Jiang G. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009;138(4):645–59.

36. Hirsch H.A., Iliopoulos D., Tsichlis P.N., Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009;69(19): 7507–11.

37. Ginestier C., Liu S., Diebel M.E. et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010;120(2): 485–97.


Review

For citations:


Schepotin I.B., Zotov A.S., Lyubota R.V., Anikusko N.F., Lyubota I.I. The clinical significance of breast cancer stem cells (review of literature). Tumors of female reproductive system. 2014;(3):14-19. (In Russ.) https://doi.org/10.17650/1994-4098-2014-0-3-14-19

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)