Preview

Опухоли женской репродуктивной системы

Расширенный поиск

Иммунотерапия у больных раком шейки матки

https://doi.org/10.17650/1994-4098-2020-16-2-72-77

Аннотация

Иммунотерапия – терапия ингибиторами иммунных контрольных точек – показала хорошие результаты при лечении как солидных опухолей, так и гематологических злокачественных новообразований. Пациенты с ранее неизлечимыми заболеваниями получили длительные стабилизации заболевания и высокую частоту клинических ремиссий. В этом обзоре основное внимание уделяется клиническим преимуществам, наблюдаемым на сегодняшний день, и токсичности при использовании ингибиторов иммунных контрольных точек в лечении больных раком шейки матки, способам улучшения прогнозирования и показаниям к иммунотерапии. Выбор биомаркеров для использования в прогнозировании ответа на иммунотерапию открывает новые возможности для точного отбора больных. Обзор методов иммунотерапии поможет клиницисту лучше ориентироваться в показаниях для сравнительно нового метода лечения, приведшего к революционным изменениям в стандартах лечения. Сегодня существует множество форм иммунотерапии, включая применение онколитических вирусов, лечение Т-клетками химерного антигенного рецептора (CAR), использование противораковых вакцин и адоптивную терапию Т-клетками, в частности, ингибиторами иммунных контрольных точек, I поколение которых включает моноклональные антитела, направленные против PD-1 (пембролизумаб, ниволумаб, цемиплимаб), против PD-L1 (атезолизумаб, авелумаб и дурвалумаб) и против белка CTLA-4 (ипилимумаб).

Об авторе

А. Г. Кедрова
ФГБУ «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий Федерального медико-биологического агентства России»
Россия

Анна Генриховна Кедрова

115682 Москва, Ореховый бульвар, 28



Список литературы

1. Roberts K., Culleton V., Lwin Z. et al. Immune checkpoint inhibitors: Navigating a new paradigm of treatment toxicities. Asia Pac J Clin Oncol 2017;13:277–88. DOI: 10.1111/ajco.12698.

2. Einstein M.H., Schiller J.T., Viscidi R.P. et al. Clinician’s guide to human papillomavirus immunology: knowns and unknowns. Lancet Infect Dis 2009;9:347–56. DOI: 10.1016/S1473-3099(09)70108-2.

3. Arbyn M., Xu L., Simoens C. et al. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst Rev 2018;5:CD009069. DOI: 10.1002/14651858.CD009069.pub3.

4. Chung H.C., Schellens J.H.M., Delord J.-P. et al. Pembrolizumab treatment of advanced cervical cancer: updated results from the phase 2 Keynote 158 study. J Clin Oncol 2018;36:5522.

5. Lheureux S., Butler M.O., Clarke B. et al. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma. JAMA Oncol 2018;4:e173776. DOI: 10.1001/jamaoncol.2017.3776.

6. Hollebecque A., Meyer T., Moore K.N. et al. An open-label, multicohort, phase I/II study of nivolumab in patients with virusassociated tumors (CheckMate 358): efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. J Clin Oncol 2017;35:5504.

7. Santin A., Deng W., Frumovitz M.M. et al. A phase II evaluation of nivolumab, a fully human antibody against PD-1, in the treatment of persistent or recurrent cervical cancer. J Clin Oncol 2018;36:5536.

8. Santin A., Deng W., Frumovitz M.M. et al. A phase II evaluation of nivolumab, a fully human antibody against PD-1, in the treatment of persistent or recurrent cervical cancer. J Clin Oncol 2018;36:5536.

9. FDA label for Pembrolizumab. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s014lbl.pdf.

10. Stevanović S., Pasetto A., Helman S.R. et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 2017;356:200–5. DOI: 10.1126/science.aak9510.

11. Chung H.G., Ros W., Delord J.P. et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. Clin Oncol 2019;37(17):1470–8. DOI: 10.1200/JCO.18.01265.

12. Frenel J.S., du Rusquec P., de Calbiac O. et al. Clinical utility of pembrolizumab in the management of advanced solid tumors: An evidence-based review on the emerging new data. Cancer Manag Res 2019;11:4297–312. DOI: 10.2147/CMAR.S151023.

13. Lheureux S., Butler M.O., Clarke B. et al. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma. JAMA Oncol 2018;4(7):e173776. DOI: 10.1001/jamaoncol.2017.3776.

14. Hollebecque A., Meyer T., Moore K. et al. An open-label, multicohort, phase I/II study of nivolumab in patients with virusassociated tumors (CheckMate 358): Efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. Clin Oncol 2017;35 (15 Suppl):5504–14. DOI: 10.1200/JCO.2017.35.15_suppl.5504.

15. Santin A., Deng W., Frumovitz M. et al. A phase II evaluation of nivolumab, a fully human antibody against PD-1, in the treatment of persistent or recurrent cervical cancer. Clin Oncol 2018;36 (15 Suppl):5536–40. DOI: 10.1200/JCO.2018.36.15_suppl.5536.

16. Tewari K.S., Vergote I., Oaknin A. et al. GOG3016/ENGOT-cx9: An open-label multi-national, randomized, phase 3 trial of cemiplimab, an anti-PD-1, versus investigator’s choice chemotherapy in 2 line recurrent or metastatic cervical cancer. Ann Oncol 2018;29 (Suppl 9):ix79–86. DOI: 10.1093/annonc/mdy436.

17. Shapira-Frommer R., Alexandre J., Monk B. et al. KEYNOTE-826: A phase 3, randomized, double-blind, placebocontrolled study of pembrolizumab plus chemotherapy for first-line treatment of persistent, recurrent, or metastatic cervical cancer. Clin Oncol 2018;36 (15 Suppl):5536–40. DOI: 10.1200/JCO.2018.36.15_suppl.5536.

18. Efficacy and safety of BCD-100 (antiPD-1) in combination with platinumbased chemotherapy with and without bevacizumab as first-line treatment of subjects with advanced cervical cancer (FERMATA). Available at: https://clinicaltrials.gov/ct2/show/NCT03912415.

19. Rubin K.M., Kottschade L.A. Supportive care and management of treatmentrelated adverse effects from immune checkpoint inhibitors and targeted therapies in melanoma. J Adv Pract Oncol 2018;9:57–71.

20. Huh W.K., Dizon D.S., Powell M.A. et al. ADXS11-001 immunotherapy in squamous or non-squamous persistent/ recurrent metastatic cervical cancer. Results from stage I of the phase II GOG/ NRG0265 study. J Clin Oncol 2016;34:5516.

21. Postow M.A., Sidlow R., Hellmann M.D. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018;378:158–68.

22. Kim H.D., Park S.H. Immunological and clinical implications of immune checkpoint blockade in human cancer. Arch Pharm Res 2019;42(7):567–81. DOI: 10.1007/s12272-019-01140-1.

23. Guo C.S., Sandhu A. Managing toxicities of immune checkpoint inhibitors. Cancer Forum 2018;42:64–91.

24. Tang H., Liang Y., Anders R.A. et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest 2018;128:580–8.


Рецензия

Для цитирования:


Кедрова А.Г. Иммунотерапия у больных раком шейки матки. Опухоли женской репродуктивной системы. 2020;16(2):72-77. https://doi.org/10.17650/1994-4098-2020-16-2-72-77

For citation:


Kedrova A.G. Immunotherapy in patients with cervical cancer. Tumors of female reproductive system. 2020;16(2):72-77. (In Russ.) https://doi.org/10.17650/1994-4098-2020-16-2-72-77

Просмотров: 1963


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)