Preview

Опухоли женской репродуктивной системы

Расширенный поиск

МикроРНК-зависимые механизмы резистентности клеток рака молочной железы к таксанам

https://doi.org/10.17650/1994-4098-2022-18-3-52-63

Полный текст:

Аннотация

Рак молочной железы (РМЖ) занимает лидирующие позиции в статистике онкологической заболеваемости и смертности среди женщин. схемы полихимиотерапии, включающие препараты группы таксанов, являются важным компонентом комплексной терапии РМЖ. существующие алгоритмы применения таксансодержащих режимов химиотерапии не всегда обеспечивают желаемый эффект. Это указывает на необходимость поиска новых прогностических факторов и разработки методов модификации ответа клеток РМЖ на стандартные схемы терапии. микроРНК, короткие молекулы РНК, формирующие систему регуляции белкового синтеза, рассматриваются как перспективные маркеры и потенциальные модуляторы чувствительности клеток РМЖ к таксанам.

В обзоре кратко описаны молекулярные механизмы цитостатического эффекта таксанов и механизмы резистентности клеток к нарушению процесса деполимеризации микротрубочек, проведен анализ современных экспериментальных и описательных исследований роли молекул микроРНК в регуляции этих механизмов, дана оценка перспектив разработки методов прогнозирования и оптимизации цитостатического эффекта таксанов на основе анализа или модификации состава внутриклеточных микроРНК.

Об авторах

В. С. Аполлонова
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Петрова» Минздрава России
Россия

197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68



Е. И. Сидина
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Петрова» Минздрава России
Россия

197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68



Е. В. Ткаченко
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Петрова» Минздрава России
Россия

197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68



А. В. Малек
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Петрова» Минздрава России
Россия

Анастасия Валерьевна Малек 

197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68



Список литературы

1. Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020: An overview. Int J Cancer 2021;149(4):778–89. DOI: 10.1002/ijc.33588

2. Turashvili G., Brogi E. Tumor heterogeneity in breast cancer. Front Med 2017;4:227. DOI: 10.3389/fmed.2017.00227

3. Stephens P.J., Tarpey P.S., Davies H. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012;486(7403):400–4. DOI: 10.1038/nature11017

4. Korde L.A., Somerfield M.R., Carey L.A. et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO Guideline. J Clin Oncol 2021;39(13):1485–505. DOI: 10.1200/JCO.20.03399

5. Pu M., Messer K., Davies S.R. et al. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res Treat 2020;179(1):197–206. DOI: 10.1007/s10549-019-05446-y

6. Almstedt K., Mendoza S., Otto M. et al. EndoPredict® in early hormone receptor-positive, HER2-negative breast cancer. Breast Cancer Res Treat 2020;182(1):137–46. DOI: 10.1007/s10549-020-05688-1

7. Buus R., Sestak I., Kronenwett R. et al. Molecular Drivers of Oncotype DX, Prosigna, EndoPredict, and the Breast Cancer Index: A TransATAC Study. J Clin Oncol 2021;39(2):126–35. DOI: 10.1200/JCO.20.00853

8. Nicolini A., Ferrari P., Duffy M.J. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semin Cancer Biol 2018;52(Pt 1):56–73. DOI: 10.1016/j.semcancer.2017.08.010

9. Abdelhakam D.A., Hanna H., Nassar A. Oncotype DX and Prosigna in breast cancer patients: A comparison study. Cancer Treat Res Commun 2021;26:100306. DOI: 10.1016/j.ctarc.2021.100306

10. Рак молочной железы: клинические рекомедации. Министерство здравоохранения Российской Федерации, 2018.

11. Denduluri N., Somerfield M.R., Chavez-MacGregor M. et al. Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO Guideline Update. J Clin Oncol 2021;39(6):685–93. DOI: 10.1200/JCO.20.02510

12. Krop I., Ismaila N., Andre F. et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update. J Clin Oncol 2017;35(24):2838–47. DOI: 10.1200/JCO.2017.74.0472

13. Semiglazov V.F., Dzhelialova M.A. Adjuvant and neoadjuvant therapy of ER+/HER2– breast cancer. Med Alph 2021;1(31):7–12. DOI: 10.33667/2078-5631-2021-31-7-12

14. Zaheed M., Wilcken N., Willson M.L. et al. Sequencing of anthracyclines and taxanes in neoadjuvant and adjuvant therapy for early breast cancer. Cochrane Database Syst Rev 2019;2(2):CD012873. DOI: 10.1002/14651858.CD012873.pub2

15. McGrogan B.T., Gilmartin B., Carney D.N., McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 2008;1785(2):96–132. DOI: 10.1016/j.bbcan.2007.10.004

16. Nakayama S., Torikoshi Y., Takahashi T. et al. Prediction of paclitaxel sensitivity by CDK1 and CDK2 activity in human breast cancer cells. Breast Cancer Res 2009;11(1):R12. DOI: 10.1186/bcr2231

17. Binarová P., Tuszynski J. Tubulin: Structure, functions and roles in disease. Cells 2019;8(10):1294. DOI: 10.3390/cells8101294

18. Karahalil B., Yardım-Akaydin S., Nacak Baytas S. An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol 2019;70(3):160–72. DOI: 10.2478/aiht-2019-70-3258

19. Kellogg E.H., Hejab N.M.A., Howes S. et al. Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from Cryo-EM structures. J Mol Biol 2017;429(5):633–46. DOI: 10.1016/j.jmb.2017.01.001 20. Wani M.C., Taylor H.L., Wall M.E. et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971;93(9):2325–7. DOI: 10.1021/ja00738a045

20. Ojima I., Lichtenthal B., Lee S. et al. Taxane anticancer agents: a patent perspective. Expert Opin Ther Pat 2016;26(1):1–20. DOI: 10.1517/13543776.2016.1111872

21. Goda K., Bacsó Z., Szabó G. Multidrug resistance through the spectacle of P-glycoprotein. Curr Cancer Drug Targets

22. ;9(3):281–97. DOI: 10.2174/156800909788166493

23. Bissery M.C. Preclinical evaluation of new taxoids. Curr Pharm Des 2001;7(13):1251–7. DOI: 10.2174/1381612013397465

24. Orr G.A., Verdier-Pinard P., McDaid H., Horwitz S.B. Mechanisms of taxol resistance related to microtubules. Oncogene 2003;22(47):7280–95. DOI: 10.1038/sj.onc.1206934

25. Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010;10(3):194–204. DOI: 10.1038/nrc2803

26. Abu Samaan T.M., Samec M., Liskova A. et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 2019;9(12):789. DOI: 10.3390/biom9120789

27. Maloney S.M., Hoover C.A., Morejon-Lasso L.V., Prosperi J.R. Mechanisms of taxane resistance. Cancers (Basel) 2020;12(11):3323. DOI: 10.3390/cancers12113323

28. Lebok P., Öztürk M., Heilenkötter U. et al. High levels of class III β-tubulin expression are associated with aggressive tumor features in breast cancer. Oncol Lett 2016;11(3):1987–94. DOI: 10.3892/ol.2016.4206

29. Wu J., Zhang Y., Li M. Identification of genes and miRNAs in paclitaxel treatment for breast cancer. Gynecol Endocrinol 2021;37(1):65–71. DOI: 10.1080/09513590.2020.1822801

30. Chen D., Bao C., Zhao F. et al. Exploring specific miRNA-mRNA axes with relationship to taxanes-resistance in breast cancer. Front Oncol 2020;10:1397. DOI: 10.3389/fonc.2020.01397

31. Lu T.X., Rothenberg M.E. MicroRNA. J Allergy Clin Immunol 2018;141(4):1202–7. DOI: 10.1016/j.jaci.2017.08.034

32. Si W., Shen J., Zheng H., Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019;11(1):25. DOI: 10.1186/s13148-018-0587-8

33. Cui S., Wang R., Chen L. MicroRNAs: key players of taxane resistance and their therapeutic potential in human cancers. J Cell Mol Med 2013;17(10):1207–17. DOI: 10.1111/jcmm.12131

34. Lobert S., Jefferson B., Morris K. Regulation of β-tubulin isotypes by micro-RNA 100 in MCF7 breast cancer cells. Cytoskeleton (Hoboken) 2011;68(6):355–62. DOI: 10.1002/cm.20517

35. Fromes Y., Gounon P., Veitia R. et al. Influence of microtubuleassociated proteins on the differential effects of paclitaxel and docetaxel. J Protein Chem 1996;15(4):377–88. DOI: 10.1007/BF01886864

36. Haenisch S., Werk A.N., Cascorbi I. MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol 2014;77(4):587–96. DOI: 10.1111/bcp.12251

37. Chen C., Shen M., Liao H. et al. A paclitaxel and microRNA-124 coloaded stepped cleavable nanosystem against triple negative breast cancer. J Nanobiotechnology 2021;19(1):55. DOI: 10.1186/s12951-021-00800-z

38. Pang Y., Wu J., Li X. et al. NEAT1/miR-124/STAT3 feedback loop promotes breast cancer progression. Int J Oncol 2019;55(3): 745–54. DOI: 10.3892/ijo.2019.4841

39. Cai W.L., Huang W.D., Li B. et al. MicroRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer 2018;17(1):9. DOI: 10.1186/s12943-017-0746-0

40. Hou L., Zhao Y., Song G. et al. Interfering cellular lactate homeostasis overcomes taxol resistance of breast cancer cells through the microRNA-124-mediated lactate transporter (MCT1) inhibition. Cancer Cell Int 2019;19(1):193. DOI: 10.1186/s12935-019-0904-0

41. Shi P., Chen C., Li X. et al. MicroRNA-124 suppresses cell proliferation and invasion of triple negative breast cancer cells by targeting STAT3. Mol Med Rep 2019;19(5):3667–75. DOI: 10.3892/mmr.2019.10044

42. Liao X.H., Xiang Y., Yu C.X. et al. STAT3 is required for MiR-175p-mediated sensitization to chemotherapy-induced apoptosis in breast cancer cells. Oncotarget 2017;8(9):15763–74. DOI: 10.18632/oncotarget.15000

43. Tang X., Jin L., Cao P. et al. MicroRNA-16 sensitizes breast cancer cells to paclitaxel through suppression of IKBKB expression. Oncotarget 2016;7(17):23668–83. DOI: 10.18632/oncotarget.8056

44. Zhou M., Liu Z., Zhao Y. et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 2010;285(28):21496–507. DOI: 10.1074/jbc.M109.083337

45. Wang W., Zhang L., Wang Y. et al. Involvement of miR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis 2017;8(10):e3071. DOI: 10.1038/cddis.2017.460

46. Geng W., Song H., Zhao Q. et al. MiR-520h stimulates drug resistance to paclitaxel by targeting the OTUD3-PTEN axis in breast cancer. Biomed Res Int 2020;2020:9512793. DOI: 10.1155/2020/9512793

47. Liu J., Meng T., Yuan M. et al. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 2016;11:6713–25. DOI: 10.2147/IJN.S111647

48. Gong J.P., Yang L., Tang J.W. et al. Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drugresistant breast carcinoma cell lines via targeting ABCB9. Oncol Lett 2016;12(5):3905–11. DOI: 10.3892/ol.2016.5139

49. Xiang F., Fan Y., Ni Z. et al. Ursolic Acid reverses the chemoresistance of breast cancer cells to paclitaxel by targeting MiRNA149-5p/MyD88. Front Oncol 2019;9:501. DOI: 10.3389/fonc.2019.00501

50. Zhang L., Chen T., Yan L. et al. MiR-155-3p acts as a tumor suppressor and reverses paclitaxel resistance via negative regulation of MYD88 in human breast cancer. Gene 2019;700:85–95. DOI: 10.1016/j.gene.2019.02.066

51. Song Y., Wang Y., Wen Y. et al. MicroRNA-22 suppresses breast cancer cell growth and increases paclitaxel sensitivity by targeting NRAS. Technol Cancer Res Treat 2018;17:1533033818809997. DOI: 10.1177/1533033818809997

52. Wang M., Cai W.R., Meng R. et al. MiR-485-5p suppresses breast cancer progression and chemosensitivity by targeting Survivin. Biochem Biophys Res Commun 2018;501(1):48–54. DOI: 10.1016/j.bbrc.2018.04.129

53. Hong T., Ding J., Li W. MiR-7 reverses breast cancer resistance to chemotherapy by targeting MRP1 and BCL2. Onco Targets Ther 2019;12:11097–105. DOI: 10.2147/OTT.S213780

54. Dastmalchi N., Safaralizadeh R., Hosseinpourfeizi M.A. et al. MicroRNA-424-5p enhances chemosensitivity of breast cancer cells to taxol and regulates cell cycle, apoptosis, and proliferation. Mol Biol Rep 2021;48(2):1345–57. DOI: 10.1007/s11033-021-06193-4

55. Xue J., Chi Y., Chen Y. et al. MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene 2016;35(4):448–58. DOI: 10.1038/onc.2015.96

56. Hu Y., Qiu Y., Yagüe E. et al. MiRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer. Cell Death Dis 2016;7(6):e2291. DOI: 10.1038/cddis.2016.194

57. Lin L.F., Li Y.T., Han H., Lin S.G. MicroRNA-205-5p targets the HOXD9-Snail1 axis to inhibit triple negative breast cancer cell proliferation and chemoresistance. Aging (Albany NY) 2021;13(3):3945–56. DOI: 10.18632/aging.202363

58. Chen D., Si W., Shen J. et al. MiR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis 2018;9(2):188. DOI: 10.1038/s41419-017-0211-4

59. Sun X., Xu H., Huang T. et al. Simultaneous delivery of antimiRNA and docetaxel with supramolecular self-assembled “chitosome” for improving chemosensitivity of triple negative breast cancer cells. Drug Deliv Transl Res 2021;11(1):192–204. DOI: 10.1007/s13346-020-00779-4

60. Liu X., Luo X., Wu Y. et al. MicroRNA-34a attenuates paclitaxel resistance in prostate cancer cells via direct suppression of JAG1/Notch1 axis. Cell Physiol Biochem 2018;50(1):261–76. DOI: 10.1159/000494004

61. Yu J., Zhao Y., Liu C. et al. Synergistic anti-tumor effect of paclitaxel and miR-34a combined with ultrasound microbubbles on cervical cancer in vivo and in vitro. Clin Transl Oncol 2020;22(1):60–9. DOI: 10.1007/s12094-019-02131-w

62. Zhang L., Yang X., Lv Y. et al. Cytosolic co-delivery of miRNA-34a and docetaxel with core-shell nanocarriers via caveolae-mediated pathway for the treatment of metastatic breast cancer. Sci Rep 2017;7(1):46186. DOI: 10.1038/srep46186

63. Sharma S., Pukale S., Sahel D.K. et al. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. Mater Sci Eng C Mater Biol Appl 2021;128:112305. DOI: 10.1016/j.msec.2021.112305

64. Lyu H., Wang S., Huang J. et al. Survivin-targeting miR-542-3p overcomes HER3 signaling-induced chemoresistance and enhances the antitumor activity of paclitaxel against HER2-overexpressing breast cancer. Cancer Lett 2018;420:97–108. DOI: 10.1016/j.canlet.2018.01.065

65. Wang S., Huang X., Lee C.K., Liu B. Elevated expression of erbB3 confers paclitaxel resistance in erbB2-overexpressing breast cancer cells via upregulation of Survivin. Oncogene 2010;29(29):4225–36. DOI: 10.1038/onc.2010.180


Рецензия

Для цитирования:


Аполлонова В.С., Сидина Е.И., Ткаченко Е.В., Малек А.В. МикроРНК-зависимые механизмы резистентности клеток рака молочной железы к таксанам. Опухоли женской репродуктивной системы. 2022;18(3):52-63. https://doi.org/10.17650/1994-4098-2022-18-3-52-63

For citation:


Apollonova V.S., Sidina E.I., Tkachenko E.V., Malek A.V. MicroRNA-dependent mechanisms of taxane resistance in breast cancer. Tumors of female reproductive system. 2022;18(3):52-63. (In Russ.) https://doi.org/10.17650/1994-4098-2022-18-3-52-63

Просмотров: 143


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)