Preview

Опухоли женской репродуктивной системы

Расширенный поиск

Гены раннего ответа в патогенезе рака шейки матки: обзор

https://doi.org/10.17650/1994-4098-2011-0-1-96-105

Аннотация

Гены раннего ответа — это группа протоонкогенов, в числе первых активирующихся при стимуляции клетки различными ростовыми факторами и участвующих в регуляции клеточной пролиферации и дифференцировки. Накоплен большой объем данных, подтверждающих, что изменение экспрессии данных генов является одним из центральных и наиболее ранних событий канцерогенеза. В связи с этим представляется перспективным использование генов раннего ответа в качестве диагностических и прогностических маркеров для выявления и комплексной терапии рака шейки матки — одного из наиболее распространенных онко-гинекологических заболеваний, характеризующихся высоким показателем смертности и сложностью ранней диагностики. Теоретическую основу данных перспектив составляют обнаруженные механизмы взаимодействия генов раннего ответа с геномом вируса папилломы человека — главной причиной развития рака шейки матки.

Об авторах

О. В. Курмышкина
Петрозаводский государственный университет, Петрозаводск, Карелия
Россия


Т. О. Волкова
Петрозаводский государственный университет, Петрозаводск, Карелия
Россия


П. И. Ковчур
Петрозаводский государственный университет, Петрозаводск, Карелия
Россия


И. Е. Бахлаев
Петрозаводский государственный университет, Петрозаводск, Карелия
Россия


Н. Н. Немова
Петрозаводский государственный университет; Институт биологии КарНЦ РАН, Петрозаводск, Карелия
Россия


Список литературы

1. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci 2006;110:525–41.

2. Sassone-Corsi P. Goals for signal transduction pathways: linking up with transcriptional regulation. EMBO J 1994;13(20):4717–28.

3. Dueñas-González A., Lizano M., Candelaria M. et al. Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer 2005;4:38.

4. Jayshree R.S., Sreenivas A., Tessy M. et al. Cell intrinsic and extrinsic factors in cervical carcinogenesis. Indian J Med Res 2009;130:286–95.

5. Motoyama S., Ladines-Llave C.A., Villanueva S.L. et al. The role of human papilloma virus in the molecular biology of cervical carcinogenesis. Kobe J Med Sci 2004;50(1):9–19.

6. Wang S.S., Hildesheim A. Viral and host factors in human papillomavirus persistence and progression. J Natl Cancer Inst Monograph 2003;31:35–40.

7. Pett M., Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 2007;212:356–67.

8. Kanodia S., Fahey L.M., Kast W.M. Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Target 2007;7:79–89.

9. Jastreboff A.M., Cymet T. Role of the human papilloma virus in the development of cervical intraepithelial neoplasia and malignancy. Postgrad Med J 2002;78:225–8.

10. Lazo P.A. The molecular genetics of cervical carcinoma. Br J Cancer 1999;80(12):2008–18.

11. Soto U., Das B.C., Lengert M. et al. Conversion of HPV 18 positive non- tumorigenic HeLa-fibroblast hybrids to invasive growth involves loss of TNF-a mediated repression of viral transcription and modification of the AP-1 transcription complex. Oncogene 1999;18:3187–98.

12. Fogel S., Riou G. The early HPV 16 proteins can regulate mRNA levels of cell cycle genes in human cervical carcinoma cells by p53-independent mechanisms. Virology 1998;244 (1):97–107.

13. Narisawa-Saito M., Yoshimatsu Y., Ohno S. An in vitro multistep carcinogenesis model for human cervical cancer. Cancer Res 2008;68(14).

14. Shaulian E., Karin M. AP-1 in cell proliferation and survival. Oncogene 2001;20:2390–400.

15. Levens D. Disentangling the MYC web. PNAS 2002;99(9):5757–9.

16. Hess J., Angel P., Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 2004;117:5965–73.

17. Eilers M., Eisenman R.N. Myc’s broad reach. Gen Develop 2008;22:2755–66.

18. Vogt P.K. Jun, the oncoprotein. Oncogene 2001;20:2365–77.

19. Thierry F. Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 2009;384:375–9.

20. Kyo S., Klumpp D.J., Inoue M. et al. Expression of AP1 during cellular differentiation determines human papillomavirus E6/E7 expression in stratified epithelial cells. J Gener Virol 1997;78:401–11.

21. Nirnberg W., Artuc M., Vorbrueggen G. et al. Nuclear proto-oncogene products transactivate the human papillomavirus type 16 promoter. Br J Cancer 1995;71:1018–24.

22. Velazquez T.A., Gariglio V.P. Possible role of transcription factor AP1 in the tissue- specific regulation of human papillomavirus. Rev Invest Clin 2002;54(3):23–42.

23. Young M.R., Farrell L., Lambert P. et al. Protection against human papillomavirus type 16-E7 oncogene-induced tumorigenesis by in vivo expression of dominant-negative c-jun. Mol Carcinog 2002;34(2):72–7.

24. Rösl F., Das B.C., Lengert M. et al. Antioxidant-induced changes of the AP-1 transcription complex are paralleled by a selective suppression of human papillomavirus transcription. J Virol 1997;71(1):362–70.

25. de Wilde J., De-Castro A.J., Snijders P.J. et al. Alterations in AP-1 and AP-1 regulatory genes during HPV-induced carcinogenesis. Cell Oncol 2008;30(1):77–87.

26. Prusty B.K., Das B.C. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer 2005;113:951–60.

27. Morosov A., Phelps W.C., Raychaudhuri P. Activation of the c-fos gene by the HPV 16 upon the CAMP-response element at -60. JBC 1994;269(28):18434–40.

28. Nead M.A., Baglia L.A., Antinore M.J. et al. Rb binds c-Jun and activates transcription. EMBO J 1998;17(8):2342–52.

29. Gandarillas A., Watt F.M. Changes in expression of members of the fos and jun families and myc network during terminal differentiation of human keratinocytes. Oncogene 1995;11(7):1403–7.

30. Welter J.F., Eckert R.L. Differential expression of the fos and jun family members c-fos, fosB, Fra-1, Fra-2, c-jun, junB and junD during human epidermal keratinocyte differentiation. Oncogene 1995;11:2681–7.

31. Antinore M.J., Birrer M.J., Patel D. et al. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J 1996;15(8):1950–60.

32. Leechanachai P., Banks L., Moreau F. et al. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 1992;7(1):19–25.

33. Peter M., Rosty C., Couturier J. et al. MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene 2006;25(44):5985–93.

34. Ferber M.J., Eilers P., Schuuring E. et al. Positioning of cervical carcinoma and Burkitt lymphoma translocation breakpoints with respect to the human papillomavirus integration cluster in FRA8C at 8q24.13. Cancer Genet Cytogenet 2004;154(1):1–9.

35. Couturier J., Sastre-Garau X., Schneider-Maunoury S. et al. Integration of papillomavirus DNA near myc genes in genital carcinomas and its consequences for proto-oncogene expression. J Virol 1991;65(8):4534–8.

36. Crook T., Almond N., Murray A. et al. Constitutive expression of c-myc oncogene confers hormone independence and enhanced growth-factor responsiveness on cells transformed by human papilloma virus type 16. PNAS 1989;86:5713–17.

37. Veldman T., Liu X., Yuan H. et al. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. PNAS 2003;100(14):8211–6.

38. Gross-Mesilaty S., Reinstein E., Bercovich B. et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. PNAS 1998;95(14):8058–63.

39. Manavi M., Hudelist G., Fink-Retter A. et al. Gene profiling in Pap-cell smears of high-risk human papillomavirus-positive squamous cervical carcinoma. Gynecol Oncol 2007;105(2):418–26.

40. Santin A.D., Zhan F., Bignotti E. et al. Gene expression profiles of primary HPV 16- and HPV 18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. Virology 2005;331(2):269–91.

41. Brychtová S., Brychta T., Sedláková E. et al. Proto-oncogene c-myc in uterine cervix carcinogenesis. Neoplasma 2004;51(2):84–9.

42. Klaes R., Friedrich T., Spitkovsky D. et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 2001;92(2):276–84.

43. Ruan Y.H., Wei W.L., Zhang H.X. et al. Comparison and analysis of expression of c-myc and p16 in cervical carcinoma. Ai Zheng 2003;22(6):602–6.

44. Lindström A.K., Stendahl U., Tot T. et al. Predicting the outcome of squamous cell carcinoma of the uterine cervix using combinations of individual tumor marker expressions. Anticancer Res 2007;27(3):1609–15.

45. Gasparian N.A., Pozharisskii K.M., Zharinov G.M. et al. Immunohistochemical study of the predictive value of oncoproteins p53, Her-2 and c-myc during radiotherapy for squamous cell carcinoma of the cervix. Vopr Onkol 2007;53(4):439–44.

46. Hellberg D., Tot T., Stendahl U. Pitfalls in immunohistochemical validation of tumor marker expression — exemplified in invasive cancer of the uterine cervix. Gynecol Oncol 2009;112(1):235–40.

47. Soh L.T., Heng D., Lee I.W. et al. The relevance of oncogenes as prognostic markers in cervical cancer. Int J Gynecol Cancer 2002;12(5):465–74.

48. Maddox P., Sasieni P., Szarewski A. et al. Differential expression of keratins 10, 17, and 19 in normal cervical epithelium, cervical intraepithelial neoplasia, and cervical

49. carcinoma. J Clin Pathol 1999;52(1):41–6.

50. Williams G.H., Romanovski P., Morris L. et al. Improved cervical smear assessment using antibodies against proteins that regulate DNA replication. PNAS 1998;95:14932–47.

51. Park K.J., Soslow R.A. Current concepts in cervical pathology. Arch Pathol Lab Med 2009;133:729–38.

52. Rughooputh S., Manraj S., Eddoo R. et al. Expression of the c-myc oncogene and the presence of HPV 18: possible surrogate markers for cervical cancer? Br J Biomed Sci 2009;66(2):74–8.

53. Symonds R.P., Habeshaw T., Paul J. et al. No correlation between ras, c-myc and c-jun proto-oncogene expression and prognosis in advanced carcinoma of cervix. Eur J Cancer 1992;28(10):1615–7.

54. Arvanitis D.A., Spandidos D.A. Deregulation of the G1/S phase transition in cancer and squamous intraepithelial lesions of the uterine cervix: A case control study. Oncol Rep 2008;20:751–60.

55. Petrov S.V., Mazurenko N.N., Sukhova N.M. et al. Cell oncogene expression in normal, metaplastic, dysplastic epithelium and squamous cell carcinoma of the uterine cervix. Arkh Patol 1994;56(4):22–31.

56. Zempolich K., Fuhrman C., Milash B. et al. Changes in gene expression induced by chemoradiation in advanced cervical carcinoma: a microarray study of RTOG C-0128. Gynecol Oncol 2008;109(2):275–9.

57. Lindström A.K., Tot T., Stendahl U. et al. Discrepancies in expression and prognostic value of tumor markers in adenocarcinoma and squamous cell carcinoma in cervical cancer. Anticancer Res 2009;29(7):2577–8.

58. Yim E.K., Lee K.H., Kim C.J. et al. Analysis of differential protein expression by cisplatin treatment in cervical carcinoma cells. Int J Gynecol Cancer 2006;16(2):690–7.

59. Mason J.M. Electrostatic contacts in the activator protein-1 coiled coil enhance stability predominantly by decreasing the unfolding rate. FEBS J 2009;276(24):7305–18.

60. Gustafson W.C., Weiss W.A. Myc proteins as therapeutic targets. Oncogene 2010;29:1249–59.


Рецензия

Для цитирования:


Курмышкина О.В., Волкова Т.О., Ковчур П.И., Бахлаев И.Е., Немова Н.Н. Гены раннего ответа в патогенезе рака шейки матки: обзор. Опухоли женской репродуктивной системы. 2011;(1):96-105. https://doi.org/10.17650/1994-4098-2011-0-1-96-105

For citation:


Kurmyshkina O.V., Volkova T.O., Kovchur P.I., Bakhlayev I.E., Nemova N.N. Early response genes in the pathogenesis of cancer of the cervix uteri: a review. Tumors of female reproductive system. 2011;(1):96-105. (In Russ.) https://doi.org/10.17650/1994-4098-2011-0-1-96-105

Просмотров: 687


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)