Протеомика в диагностике рака яичников
https://doi.org/10.17650/1994-4098-2011-0-2-56-64
Аннотация
Об авторах
В. Е. ШевченкоРоссия
Н. Е. Арноцкая
Россия
Д. Е. Макаров
Россия
Н. Р. Погосян
Россия
К. И. Жорданиа
Россия
Список литературы
1. Heintz A.P., Odicino F., Maisonneuve P. et al. Carcinoma of the ovary. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet 2006;95(Suppl 1):161–92.
2. Young R.C., Walton L.A., Ellenberg S.S. et al. Adjuvant therapy in stage I and stage II epithelial ovarian cancer. Results of two prospective randomized trials. N Engl J Med 1990;322(15):1021–7.
3. Armstrong D.K., Bundy B., Wenzel L. et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 2006;354(1):34–43.
4. Markman M., Walker J.L. Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment. J Clin Oncol 2006;24(6):988–94.
5. Adam B.L., Qu Y., Davis J.W. et al. Serum protein fingerprinting coupled with a pattern- matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002;62(13):3609– 14.
6. Jacobs I.J., Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteom 2004;3(4):355–66.
7. Rai A.J., Zhang Z., Rosenzweig J. et al. Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med 2002;126(12):1518–26.
8. Sedlakova I., Vavrova J., Tosner J., Hanousek L. Lysophosphatidic acid: an ovarian cancer marker. Eur J Gynaecol Oncol 2008;29(5):511–4.
9. Moore R.G., McMeekin D.S., Brown A.K. et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol 2009;112(1):40–6.
10. Visintin I., Feng Z., Longton G. et al. Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res 2008;14(4):1065–72.
11. Ward B.G., McGuckin M.A., Ramm L.E. et al. The management of ovarian carcinoma is improved by the use of cancer-associated serum antigen and CA 125 assays. Cancer 1993;71(2):430–8.
12. Moore R.G., Brown A.K., Miller M.C. et al. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol Oncol 2008;108(2):402–8.
13. Jacobs I., Davies A.P., Bridges J. et al. Prevalence screening for ovarian cancer in postmenopausal women by CA 125 measurement and ultrasonography. BMJ 1993;306(6884):1030–4.
14. Woolas R.P., Conaway M.R., Xu F. et al. Combinations of multiple serum markers are superior to individual assays for discriminating malignant from benign pelvic masses. Gynecol Oncol 1995;59(1):111–6.
15. Zhang Z., Barnhill S.D., Zhang H. et al. Combination of multiple serum markers using an artificial neural network to improve specificity in discriminating malignant from benign pelvic masses. Gynecol Oncol 1999;73(1):56–61.
16. Skates S.J., Horick N., Yu Y. et al. Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125II, CA 15-3, CA 72-4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions. J Clin Oncol 2004;22(20):4059–66.
17. Petricoin E.F., Ardekani A.M., Hitt B.A. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359(9306):572–7.
18. Omenn G.S., States D.J., Adamski M. et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005;5(13):3226–45.
19. Tammen H., Schulte I., Hess R. et al. Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 2005;5(13):3414–22.
20. Baggerly K.A., Morris J.S., Coombes K.R. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 2004;20(5):777–85.
21. Elwood M. Proteomic patterns in serum and identification of ovarian cancer. Lancet 2002;360(9327):170–1.
22. Diamandis E.P. Proteomic patterns in serum and identification of ovarian cancer. Lancet 2002;360(9327):170–1.
23. Diamandis E.P. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteom 2004;3(4):367–78.
24. Daly M.B., Ozols R.F. The search for predictive patterns in ovarian cancer: proteomics meets bioinformatics. Cancer Cell 2002;1(2):111–2.
25. Conrads T.P., Fusaro V.A., Ross S. et al. High-resolution serum proteomic features for ovarian cancer detection. Endocr Relat Cancer 2004;11(2):163–78.
26. Baggerly K.A., Edmonson S.R., Morris J.S., Coombes K.R. High-resolution serum proteomic patterns for ovarian cancer detection. Endocr Relat Cancer 2004;11(4):583–7.
27. Ye B., Cramer D.W., Skates S.J. et al. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res 2003;9(8):2904–11.
28. Ahmed N., Barker G., Oliva K.T. et al. Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer. Br J Cancer 2004;91(1):129–40.
29. Kozak K.R., Amneus M.W., Pusey S.M. et al. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc Natl Acad Sci USA 2003;100(21):12343–8.
30. Kozak K.R., Su F., Whitelegge J.P. et al. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 2005;5(17):4589–96.
31. Woong-Shick A., Sung-Pil P., Su-Mi B. et al. Identification of hemoglobin-alpha and -beta subunits as potential serum biomarkers for the diagnosis and prognosis of ovarian cancer. Cancer Sci 2005;96(3):197–201.
32. Zhang Z., Bast R.C. Jr., Yu Y. et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004;64(16):5882–90.
33. Ahmed N., Oliva K.T., Barker G. et al. Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer. Proteomics 2005;5(17):4625–36.
34. Yu J.K., Zheng S., Tang Y., Li L. An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer. J Zhejiang Univ Sci B 2005;6(4):227–31.
35. Zhang H., Kong B., Qu X. et al. Biomarker discovery for ovarian cancer using SELDI-TOF-MS. Gynecol Oncol 2006;102(1):61–6.
36. Helleman J., van der Vlies D., Jansen M.P. et al. Serum proteomic patterns for ovarian cancer monitoring. Int J Gynecol Cancer 2008;18(5):985–95.
37. Lopez M.F., Mikulskis A., Kuzdzal S. et al. A novel, high-throughput workflow for discovery and identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples. Clin Chem 2007;53(6):1067–74.
38. Jackson D., Craven R.A., Hutson R.C. et al. Proteomic profiling identifies afamin as a potential biomarker for ovarian cancer. Clin Cancer Res 2007;13(24):7370–9.
39. Moshkovskii S.A., Serebryakova M.V., Kuteykin-Teplyakov K.B. et al. Ovarian cancer marker of 11.7 kDa detected by proteomics is a serum amyloid A1. Proteomics 2005;5(14):3790–7.
40. Lin Y.W., Lin C.Y., Lai H.C. et al. Plasma proteomic pattern as biomarkers for ovarian cancer. Int J Gynecol Cancer 2006;16(Suppl 1):139–46.
41. Boylan K.L., Andersen J.D., Anderson L.B. et al. Quantitative proteomic analysis by iTRAQ(R) for the identification of candidate biomarkers in ovarian cancer serum. Proteome Sci 2010;8:31.
42. Kumar S., Tsai C.J., Nussinov R. Temperature range of thermodynamic stability for the native state of reversible two-state proteins. Biochemistry 2003;42(17):4864–73.
43. Ye B., Skates S., Mok S.C. et al. Proteomic-based discovery and characterization of glycosylated eosinophil- derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine. Clin Cancer Res 2006;12(2):432–41.
44. Petri A.L., Simonsen A.H., Yip T.T. et al. Three new potential ovarian cancer biomarkers detected in human urine with equalizer bead technology. Acta Obstet Gynecol Scand 2009;88(1):18–26.
45. Drenberg C.D., Saunders B.O., Wilbanks G.D. et al. Urinary angiostatin levels are elevated in patients with epithelial ovarian cancer. Gynecol Oncol 2010;117(1):117–24.
46. Adam R.A., Adam Y.G. Malignant ascites: past, present, and future. J Am Coll Surg 2004;198(6):999–1011.
47. Kassis J., Klominek J., Kohn E.C. Tumor microenvironment: what can effusions teach us? Diagn Cytopathol 2005;33(5):316–9.
48. Tamsma J.T., Keizer H.J., Meinders A.E. Pathogenesis of malignant ascites: Starling’s law of capillary hemodynamics revisited. Ann Oncol 2001;12(10):1353–7.
49. Hu L., Hofmann J., Zaloudek C. et al. Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. Am J Pathol 2002;161(5):1917–24.
50. Berchuck A., Carney M. Human ovarian cancer of the surface epithelium. Biochem Pharmacol 1997;54(5):541–4.
51. Verheul H.M., Hoekman K., Jorna A.S. et al. Targeting vascular endothelial growth factor blockade: ascites and pleural effusion formation. Oncologist 2000;5(Suppl 1):45–50.
52. Gortzak-Uzan L., Ignatchenko A., Evangelou A.I. et al. A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. J Proteome Res 2008;7(1):339–51.
53. Kuk C., Kulasingam V., Gunawardana C.G. et al. Mining the ovarian cancer ascites proteome for potential ovarian cancer biomarkers. Mol Cell Proteomics 2009;8(4):661–9.
54. Davidson B., Espina V., Steinberg S.M. et al. Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin Cancer Res 2006;12(3 Pt 1):791–9.
55. Amon L.M., Law W., Fitzgibbon M.P. et al. Integrative proteomic analysis of serum and peritoneal fluids helps identify proteins that are up-regulated in serum of women with ovarian cancer. PLoS One 2010;5(6):11137.
56. Wang H., Kachman M.T., Schwartz D.R. et al. A protein molecular weight map of ES2 clear cell ovarian carcinoma cells using a two-dimensional liquid separations/ mass mapping technique. Electrophoresis 2002;23(18):3168–81.
57. Wang H., Kachman M.T., Schwartz D.R. et al. Comprehensive proteome analysis of ovarian cancers using liquid phase separation, mass mapping and tandem mass spectrometry: a strategy for identification of candidate cancer biomarkers. Proteomics 2004;4(8):2476–95.
58. Gagne J.P., Ethier C., Gagne P. et al. Comparative proteome analysis of human epithelial ovarian cancer. Proteome Sci 2007;5:16.
59. He Q.Y., Zhou Y., Wong E. et al. Proteomic analysis of a preneoplastic phenotype in ovarian surface epithelial cells derived from prophylactic oophorectomies. Gynecol Oncol 2005;98(1):68–76.
60. Yan X.D., Pan L.Y., Yuan Y. et al. Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines. J Proteome Res 2007;6(2):772–80.
61. Stewart J.J., White J.T., Yan X. et al. Proteins associated with Cisplatin resistance in ovarian cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels. Mol Cell Proteom 2006;5(3):433–43.
62. Chien J., Aletti G., Baldi A. et al. Serine protease HtrA1 modulates chemotherapy- induced cytotoxicity. J Clin Invest 2006;116(7):1994–2004.
63. Le Moguen K., Lincet H., Deslandes E. et al. Comparative proteomic analysis of cisplatin sensitive IGROV1 ovarian carcinoma cell line and its resistant counterpart IGROV1-R10. Proteomics 2006;6(19):5183–92.
64. Song J., Shih Ie M., Salani R. et al. Annexin XI is associated with cisplatin resistance and related to tumor recurrence in ovarian cancer patients. Clin Cancer Res 2007;13(22 Pt 1):6842–9.
65. Tian Y., Tan A.C., Sun X. et al. Quantitative proteomic analysis of ovarian cancer cells identified mitochondrial proteins associated with paclitaxel resistance. Proteom Clin Appl 2009;3(11):1288–95.
66. Emmert-Buck M.R., Bonner R.F., Smith P.D. et al. Laser capture microdissection. Science 1996;274(5289):998–1001.
67. Banks R.E., Dunn M.J., Forbes M.A. et al. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis — preliminary findings. Electrophoresis 1999;20(4–5):689–700.
68. Ornstein D.K., Gillespie J.W., Paweletz C.P. et al. Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 2000;21(11):2235–42.
69. Cazares L.H., Adam B.L., Ward M.D. et al. Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization
70. mass spectrometry. Clin Cancer Res 2002;8(8):2541–52.
71. Shekouh A.R., Thompson C.C., Prime W. et al. Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 2003;3(10):1988–2001.
72. Melle C., Ernst G., Schimmel B. et al. A technical triade for proteomic identification and characterization of cancer biomarkers. Cancer Res 2004;64(12):4099–104.
73. Lawrie L.C., Curran S., McLeod H.L. et al. Application of laser capture microdissection and proteomics in colon cancer. Mol Pathol 2001;54(4):253–8.
74. Cadron I., Van Gorp T., Amant F. et al. The use of laser microdissection and SELDI-TOF MS in ovarian cancer tissue to identify protein profiles. Anticancer Res 2009;29(4):1039–45.
75. Wang W., Guo T., Rudnick P.A. et al. Membrane proteome analysis of microdissected ovarian tumor tissues using capillary isoelectric focusing/reversed-phase liquid chromatography-tandem MS. Anal Chem 2007;79(3):1002–9.
76. Jones M.B., Krutzsch H., Shu H. et al. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002;2(1):76–84.
77. An H.J., Kim D.S., Park Y.K. et al. Comparative proteomics of ovarian epithelial tumors. J Proteom Res 2006;5(5):1082–90.
78. Luo J., Qian J.H., Yu J.K. et al. Discovery of altered protein profiles in epithelial ovarian carcinogenesis by SELDI mass spectrometry. Eur J Gynaecol Oncol 2008;29(3):233–8.
79. Bengtsson S., Krogh M., Szigyarto C.A. et al. Large-scale proteomics analysis of human ovarian cancer for biomarkers. J Proteome Res 2007;6(4):1440–50.
80. Li X.Q., Zhang S.L., Cai Z. et al. Proteomic identification of tumor-associated protein in ovarian serous cystadenocarinoma. Cancer Lett 2009;275(1):109–16.
81. Cable S., Keller J.M., Colin S. et al. Peroxisomes in human colon carcinomas. A cytochemical and biochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 1992;62(4):221–6.
82. Suto K., Kajihara-Kano H., Yokoyama Y. et al. Decreased expression of the peroxisomal bifunctional enzyme and carbonyl reductase in human hepatocellular carcinomas. J Cancer Res Clin Oncol 1999;125(2):83–8.
83. Faratian D., Um I., Wilson D.S. et al. Phosphoprotein pathway profiling of ovarian carcinoma for the identification of potential new targets for therapy. Eur J Cancer 2011.
84. El Ayed M., Bonnel D., Longuespee R. et al. MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers. Med Sci Monit 2010;16(8):233–45.
Рецензия
Для цитирования:
Шевченко В.Е., Арноцкая Н.Е., Макаров Д.Е., Погосян Н.Р., Жорданиа К.И. Протеомика в диагностике рака яичников. Опухоли женской репродуктивной системы. 2011;(2):56-64. https://doi.org/10.17650/1994-4098-2011-0-2-56-64
For citation:
Shevchenko V.E., Arnotskaya N.E., Makarov D.E., Pogosyan N.R., Zhordania K.I. Proteomics in the diagnosis of ovarian cancer. Tumors of female reproductive system. 2011;(2):56-64. (In Russ.) https://doi.org/10.17650/1994-4098-2011-0-2-56-64