Preview

Опухоли женской репродуктивной системы

Расширенный поиск

Иммунный ответ организма при индукции и прогрессии рака шейки матки — возможные механизмы

https://doi.org/10.17650/1994-4098-2011-0-3-65-70

Полный текст:

Аннотация

Вирус папилломы человека (ВПЧ), являющийся главной причиной заболевания раком шейки матки (РШМ), обладает иммуногенными свойствами, т. е. способностью активировать реакции противовирусного иммунитета, как адаптивного ВПЧ- специфического, так и врожденного. По этой причине, несмотря на многочисленные механизмы, выработанные ВПЧ для ускользания от реакций иммунитета, в большинстве случаев организм человека способен элиминировать инфекцию. В то же время развитие РШМ является результатом комплексного действия многих факторов различной природы, среди которых первостепенная роль принадлежит факторам, нарушающим нормальное протекание иммунного ответа.
В настоящем обзоре описаны основные факторы и механизмы, способствующие, с одной стороны, установлению персистирующей ВПЧ-инфекции и прогрессии дисплазии в рак, а с другой — позволяющие опухолевым клеткам РШМ противостоять иммунным реакциям организма. Иммунные нарушения, индуцируемые вирусом и/или опухолевыми клетками, рассматриваются как на местном, так и на системном уровнях. Особое внимание уделяется молекулярным механизмам изменений популяционного состава и функциональной активности лейкоцитов, цитокинового профиля клеток, формирования супрессорного микроокружения опухоли.

Об авторах

О. В. Курмышкина
Петрозаводский государственный университет
Россия


Т. О. Волкова
Петрозаводский государственный университет
Россия


П. И. Ковчур
Петрозаводский государственный университет
Россия


И. Е. Бахлаев
Петрозаводский государственный университет
Россия


Н. Н. Немова
Петрозаводский государственный университет; Институт биологии КарНЦ РАН, Петрозаводск, Карелия
Россия


Список литературы

1. http://www.who.int/hpvcentre

2. Castle P.E., Schiffman M., Wheeler C.M. et al. Evidence for frequent regression of cervical intraepithelial neoplasia-grade 2. Obstet Gynecol 2009;113(1):18–25.

3. Baseman J.G., Koutsky L.A. The epidemio- logy of human papillomavirus infections. J Clin Virol 2005;32(Suppl 1):16–24.

4. Giannini S.L., Hubert P., Doyen J. et al. Influence of the mucosal epithelium microenvironment on Langerhans cells: implications for the development of squamous intraepithelial lesions of the cervix. Int J Cancer 2002;97:654–9.

5. Kanodia S., Fahey L.M., Kast W.M. Mechanisms used by human papillomaviruses to escape the host immune response. Current Cancer Drug Targets 2007;7:79–89.

6. Mota F., Rayment N., Chong S. et al. The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin Exp Immunol 1999;116(1):33–40.

7. Hasan U.A., Bates E., Takeshita F. et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol 2007;178(5):3186–97.

8. Laurson J., Khan S., Chung R. et al. Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein. Carcinogenesis 2010;31(5):918–26.

9. Fahey L.M., Raff A.B., Da Silva D.M. et al. A major role for the minor capsid protein of human papillomavirus type 16 in immune escape. J Immunol 2009;183(10):6151–6.

10. Nees M., Geoghegan J.M., Hyman T. et al. Papillomavirus type 16 oncogenes downregulate expression of interferon- responsive genes and upregulate proliferation-associated and NF-kB- responsive genes in cervical keratinocytes. J Virol 2001;75(9):4283–96.

11. Garcia-Iglesias T., Del Toro-Arreola A., Albarran-Somoza B. et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 2009;9:186.

12. Miura S., Kawana K., Schust D.J. et al. CD1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: a possible mechanism for immune evasion by HPV. J Virol 2010;84(22):11614–23.

13. Moro-Rodríguez E., Álvarez-Fernández E. Losses of expression of the antigens A, Lea and Lex and over-expression of Ley in carcinomas and HG-SIL of the uterine cervix. Diagn Pathol 2008;3:38.

14. Stanley M.A. Immune responses to human papilloma viruses. Indian J Med Res 2009;130:266–76.

15. Frazer I.H. Interaction of human papillomaviruses with the host immune system: A well evolved relationship. Virology 2009;384:410–14.

16. Matsumoto K., Yasugi T., Oki A. et al. IgG antibodies to HPV16, 52, 58 and 6 L1- capsids and spontaneous regression of cervical intraepithelial neoplasia. Cancer Lett 2006;231(2):309–13.

17. Mbulawa Z.Z., Williamson A.L., Stewart D. et al. Association of serum and mucosal neutralizing antibodies to human papillomavirus type 16 (HPV-16) with HPV- 16 infection and cervical disease. J Gen Virol 2008;89(Pt 4):910–4.

18. Bard E., Riethmuller D., Meillet D. et al. High-risk papillomavirus infection is associated with altered antibody responses in genital tract: non-specific responses in HPV infection. Viral Immunol 2004;17(3):381–9. 19. Nguyen H.H., Broker T.R., Chow L.T. et al. Immune responses to human papilloma- virus in genital tract of women with cervical cancer. Gynecol Oncol 2005;96(2):452–61.

19. Das S., Karim S., Datta Ray C. et al. Peripheral blood lymphocyte subpopulations in patients with cervical cancer. Int J Gynaecol Obstet 2007;98(2):143–6.

20. Steele J.C., Mann C.H., Rookes S. et al. T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia. Br J Cancer 2005;93:248–59.

21. Bontkes H.J., de Gruijl T.D., Walboomers J.M. et al. Assessment of cytotoxic T-lymphocyte phenotype using the specific markers granzyme B and TIA-1 in cervical neoplastic lesions. Br J Cancer 1997;76(10):1353–60.

22. de Vos van Steenwijk P.J., Heusinkveld M., Ramwadhdoebe T.H. et al. An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer. Cancer Res 2010; 70(7):2707–17.

23. Woo Y.L., van den Hende M., Sterling J.C. et al. A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16, E2-, E6- and E7-specific T-cell responses. Int J Cancer 2010;126(1):133–41.

24. Cheriyan V.T., Krishna S.M., Kumar A. et al. Signaling defects and functional impairment in T-cells from cervical cancer patients. Cancer Biother Radiopharmaceut 2009;24(6):667–74.

25. Contreras D.N., Krammer P.H., Potkul R.K. et al. Cervical cancer cells induce apoptosis of cytotoxic T-lymphocytes. J Immunother 2000;23(1):67–74.

26. Ibrahim R., Frederickson H., Parr A. et al. Expression of FasL in squamous cell carcinomas of the cervix and cervical intraepithelial neoplasia and its role in tumor escape mechanism. Cancer 2006;106(5):1065–77.

27. Alvarez-Rosero R.E., Rodríguez-Argote J., Arboleda-Moreno Y.Y. et al. Chromosome aberrations in peripheral blood lymphocytes of high-risk HPV-infected women with HGSIL. Environ Mol Mutagen 2008;49(9):688–94.

28. Visser J., Nijman H.W., Hoogenboom B.N. et al. Frequencies and role of regulatory T cells in patients

29. with (pre)malignant cervical neoplasia. Clin Exp Immunol 2007;150(2):199–209.

30. van der Burg S.H., Piersma S.J., de Jong A. et al. Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. PNAS 2007;104(29):12087–92.

31. Jordanova E.S., Gorter A., Ayachi O. et al. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/ regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res 2008;14(7):2028–35.

32. Loddenkemper C., Hoffmann C., Stanke J. et al. Regulatory (FOXP3+) T cells as target for immune therapy of cervical intraepithelial neoplasia and cervical cancer. Cancer Sci 2009;100(6):1112–7.

33. Molling J.W., de Gruijl T.D., Glim J. et al. CD4(+)CD25high regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer 2007; 121(8):1749–55.

34. Rao P.E., Petrone A.L., Ponath P.D. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGFβ. J Immunol 2005;174(3):1446–55.

35. Hammes L.S., Tekmal R.R., Naud P. et al. Macrophages, inflammation and risk of cervical intraepithelial neoplasia (CIN) progression — clinicopathological correlation. Gynecol Oncol 2007;105(1):157–65.

36. Bolpetti A., Silva J.S., Villa L.L. et al. Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth. BMC Immunol 2010;11:27.

37. Jonuleit H., Schmitt E., Schuler G. et al. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000;192(9):1213–22.

38. Jayshree R.S., Sreenivas A., Tessy M. et al. Cell intrinsic and extrinsic factors in cervical carcinogenesis. Indian J Med Res 2009;130:286–95.

39. Agarwal S.M., Raghav D., Singh H. et al. CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res 2011;39(Database issue):975–9.


Для цитирования:


Курмышкина О.В., Волкова Т.О., Ковчур П.И., Бахлаев И.Е., Немова Н.Н. Иммунный ответ организма при индукции и прогрессии рака шейки матки — возможные механизмы. Опухоли женской репродуктивной системы. 2011;(3):65-70. https://doi.org/10.17650/1994-4098-2011-0-3-65-70

For citation:


Kurmyshkina O.V., Volkova T.O., Kovchur P.I., Bakhlayev I.E., Nemova N.N. The body’s immune response in the induction and progression of cancer of the cervix uteri: possible mechanisms. Tumors of female reproductive system. 2011;(3):65-70. (In Russ.) https://doi.org/10.17650/1994-4098-2011-0-3-65-70

Просмотров: 266


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)