Preview

Опухоли женской репродуктивной системы

Расширенный поиск

Роль TGF-β1/SMAD-сигнального каскада в регуляции экспрессии циклооксигеназы-2 в клетках молочной железы человека

https://doi.org/10.17650/1994-4098-2013-0-1-2-6-12

Полный текст:

Аннотация

Проведен анализ экспрессии генов SMAD2, SMAD4, SMAD7, СOX-2 и уровней белков SMAD4, SMAD7, фосфорилированной формы SMAD2 в линиях клеток рака молочной железы (РМЖ) человека MCF-7, BT-474, ZR-75-1. В результате обнаружено, что белки SMAD2, SMAD4 подавляют экспрессию фермента СOX-2 в ER(+)-клетках РМЖ и связаны с их метастатическим потенциалом. Белки SMAD4 и SMAD2, очевидно, супрессируют синтез мРНК белка COX-2, а SMAD7 является их антагонистом и стимулирует образование СOX-2. Белки SMAD2, SMAD4, SMAD7 можно рассматривать в качестве новых потенциальных мишеней для тар- гетной терапии РМЖ.

Об авторах

М. А. Таипов
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия


З. Н. Никифорова
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия


О. М. Павлова
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия


И. А. Кудрявцев
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия


Н. Е. Арноцкая
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия


В. Е. Шевченко
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия


Список литературы

1. Cancer Incidence in Five Continents. Vol. IX / M.P. Curado, B. Edwards, H.R. Shin et al. (Eds.). IARC Scientific Publications No. 160. Lyon: IARC, 2007.

2. Schedin P., Borges V. Breaking down barriers: the importance of the stromal microenvironment in acquiring invasiveness in young women's breast cancer. Breast Cancer Res 2009;11(2):102.

3. Kretzschmar M. Transforming growth factor-beta and breast cancer: Transforming growth factor-β/SMAD signaling defects and cancer. Breast Cancer Res 2000;2(2):107–15. 4. Li Q., Wu L., Oelschlager D.K. et al. Smad4 inhibits tumor growth by inducing apoptosis in estrogen receptor-alpha-positive breast cancer cells. J Biol Chem 2005;280(29):27022–8.

4. Matsumura T., Suzuki T., Aizawa K. et al. Regulation of transforming growth factor- beta-dependent cyclooxygenase-2 expression in fibroblasts. J Biol Chem 2009;284(51):35861–71.

5. Okano H., Shinohara H., Miyamoto A. et al. Concomitant overexpression of cyclooxygenase-2 in HER-2-positive on Smad4-reduced human gastric carcinomas is associated with a poor patient outcome. Clin Cancer Res 2004;10(20):6938–45.

6. Mo N., Li Z.Q., Li J., Cao Y.D. Curcumin inhibits TGF-β1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. Asian Pac J Cancer Prev 2012;13(11):5709–14.

7. Hsu H.Y., Lin T.Y., Hwang P.A. et al. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFβ receptor degradation in breast cancer. Carcinogenesis 2013 [in print].

8. Gomes L.R., Terra L.F., Wailemann R.A. et al. TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer 2012;12:26. 10. Baselga J., Rothenberg M.L., Tabernero J. et al. TGF-beta signalling-related markers in cancer patients with bone metastasis. Biomarkers 2008;13(2):217–36.

9. Schrey M.P., Patel K.V. Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators. Br J Cancer 1995;72(6):1412–9.

10. Wang D., DuBois R.N. Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch. Proc Natl Acad Sci USA 2004;101(2):415–6.

11. Guo J., Meng H., Pei J., Zhu M. Association between the TNF-α-238G>A and TGF-β1 L10P polymorphisms and breast cancer risk: a meta-analysis. Breast Care (Basel) 2011;6(2):126–9.

12. Reinholz M.M., An M.W., Johnsen S.A. et al. Differential gene expression of TGF beta inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tissue. Breast Cancer Res Treat 2004;86(1):75–88.

13. Basolo F., Fiore L., Ciardiello F. et al. Response of normal and oncogene- transformed human mammary epithelial cells to transforming growth factor beta 1 (TGF- beta 1): lack of growth-inhibitory effect on cells expressing the simian virus 40 large-T antigen. Int J Cancer 1994;56(5):736–42.

14. Zugmaier G., Ennis B.W., Deschauer B. et al. Transforming growth factors type beta 1 and beta 2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol 1989;141(2):353–61.

15. Dai J.L., Bansal R.K., Kern S.E. G1 cell cycle arrest and apoptosis induction by nuclear Smad4/Dpc4: phenotypes reversed by a tumorigenic mutation. Proc Natl Acad Sci USA 1999;96(4):1427–32.

16. Derynck R. TGF-beta-receptor-mediated signaling. Trends Biochem Sci 1994;19(12):548–53.

17. Gorsch S.M., Memoli V.A., Stukel T.A. et al. Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res 1992;52(24):6949–52.

18. Siegel P.M., Shu W., Cardiff R.D. et al. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003;100(14):8430–5.

19. Stuelten C.H., Buck M.B., Dippon J. et al. Smad4-expression is decreased in breast cancer tissues: a retrospective study. BMC Cancer 2006;6:25.

20. Petersen M., Pardali E., van der Horst G. et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 2010;29(9):1351–61.

21. Kawabata M., Inoue H., Hanyu A. et al. Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. Embo J 1998;17(14):4056–65.

22. Kloos D.U., Choi C., Wingender E. The TGF-beta–Smad network: introducing bioinformatic tools. Trends Genet 2002;18(2):96–103.

23. Heldin C.H., Miyazono K., ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997;390(6659):465–71.

24. Buck M., Fritz P., Dippon J. et al. Prognostic significance of transforming growth factor beta receptor II in estrogen receptor negative breast cancer patients. Clin Cancer Res 2004;10(2):491–8.

25. Hahn S.A., Schutte M., Hoque A.T. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271(5247):350–3.

26. Wilentz R.E., Su G.H., Dai J.L. et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas : a new marker of DPC4 inactivation. Am J Pathol 2000;156(1):37–43. 29. Wilentz R.E., Iacobuzio-Donahue C.A., Argani P. et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 2000;60(7):2002–6.

27. Natsugoe S., Xiangming C., Matsumoto M. et al. Smad4 and transforming growth factor beta1 Expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res 2002;8(6):1838–42.

28. Salovaara R., Roth S., Loukola A. et al. Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut 2002;51(1):56–9.

29. Cardillo M.R., Lazzereschi D., Gandini O. et al. Transforming growth factor-beta pathway in human renal cell carcinoma and surrounding normal-appearing renal parenchyma. Anal Quant Cytol Histol 2001;23(2):109–17.

30. Schutte M. DPC4/SMAD4 gene alterations in human cancer, and their functional implications. Ann Oncol 1999;10(4):56–9.

31. Schutte M., Hruban R.H., Hedrick L. et al. DPC4 gene in various tumor types. Cancer Res 1996;56(11):2527–30.

32. Scollen S., Luccarini C., Baynes C. et al. TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2011;20(6):1112–9.

33. Xiong Z., Ding L., Sun J. et al. Synergistic repression of estrogen receptor transcriptional activity by FHL2 and Smad4 in breast cancer cells. IUBMB Life 2010;62(9):669–76.

34. Erkinheimo T.L., Lassus H., Finne P. et al. Elevated cyclooxygenase-2 expression is

35. associated with altered expression of p53 and SMAD4, amplification of HER-2/neu, and poor outcome in serous ovarian carcinoma. Clin Cancer Res 2004;10(2):538–45.

36. Zhao X., Goswami M., Pokhriyal N. et al. Cyclooxygenase-2 expression during immortalization and breast cancer progression. Cancer Res 2008;68(2):467–75.

37. Serra K.P., Sarian L.O., Rodrigues-Peres R.M. et al. Expression of cyclooxygenase-2 (COX-2) and p53 in neighboring invasive and in situ components of breast tumors. Acta Histochem 2012;114(3):226–31.

38. Singh M., Chaudhry P., Parent S.,

39. Asselin E. Ubiquitin-proteasomal degradation of COX-2 in TGF-β stimulated human endometrial cells is mediated through endoplasmic reticulum mannosidase I. Endocrinology 2012;153(1):426–37.

40. Banz-Jansen C., Münchow B., Diedrich K., Finas D. Bridge-1 is expressed in human breast carcinomas: silencing of Bridge-1 decreases Smad2, Smad3 and Smad4 expression in MCF-7 cells, a human breast cancer cell line. Arch Gynecol Obstet 2011;284(6):1543–9.

41. Luo X., Ding Q., Wang M. et al. In vivo disruption of TGF-beta signaling by Smad7 in airway epithelium alleviates allergic asthma but aggravates lung carcinogenesis in mouse. PLoS One 2010;5(4):e10149.

42. Shen J.L., Yan C.H., Liu Y. et al. Studies of TGF-beta/Smads expression in lung cancer. Yi Chuan Xue Bao 2003;30(7):681–6.

43. Reinholz M.M., Nibbe A., Jonart L.M. et al. Evaluation of a panel of tumor markers for molecular detection of circulating cancer cells in women with suspected breast cancer. Clin Cancer Res 2005;11(10):3722–32.

44. Kim S., Han J., Lee S.K. et al. Smad7 acts as a negative regulator of the epidermal growth factor (EGF) signaling pathway in breast cancer cells. Cancer Lett 2012;314(2):147–54.

45. Jeon W.K., Hong H.Y., Seo W.C. et al. Smad7 sensitizes A549 lung cancer cells to cisplatin-induced apoptosis through heme oxygenase-1 inhibition. Biochem Biophys Res Commun 2012;420(2):288–92.


Для цитирования:


Таипов М.А., Никифорова З.Н., Павлова О.М., Кудрявцев И.А., Арноцкая Н.Е., Шевченко В.Е. Роль TGF-β1/SMAD-сигнального каскада в регуляции экспрессии циклооксигеназы-2 в клетках молочной железы человека. Опухоли женской репродуктивной системы. 2013;(1-2):6-12. https://doi.org/10.17650/1994-4098-2013-0-1-2-6-12

For citation:


Taipov M.A., Nikiforova Z.N., Pavlova O.M., Kudryavtsev I.A., Arnotskaya N.Y., Shevchenko V.Y. Role of TGF-β1/SMAD signaling cascade in the regulation of cyclooxygenase-2 expression in human breast cancer cells. Tumors of female reproductive system. 2013;(1-2):6-12. (In Russ.) https://doi.org/10.17650/1994-4098-2013-0-1-2-6-12

Просмотров: 188


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)