Опухоли женской репродуктивной системы

Расширенный поиск

Роль COX-2 в регуляции метастатического потенциала опухолевых клеток молочной железы человека

Полный текст:


Проведен анализ экспрессии СOX-2, VEGF, VEGFR-1, VEGFR-2, VEGFR-3, EGFR, эндоглина (СD105), IL-6 в опухолевых клетках молочной железы человека с разным метастатическим потенциалом. Исследовалась роль данных факторов в регуляции мета- статического потенциала клеток рака молочной железы, а также роль СOX-2 в регуляции процессов метастазирования на клеточном уровне; оценивалась потенциальная способность опухолевых клеток молочной железы человека вырабатывать фак- торы, стимулирующие рост опухоли, ангиогенез и метастазирование.

Об авторах

М. А. Таипов
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва

З. Н. Никифорова
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва

И. А. Кудрявцев
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва

Н. Е. Арноцкая
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва

В. Е. Шевченко
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва

Список литературы

1. Curado M.P., Edwards B., Shin H.R. et al. Cancer Incidence in Five Continents. Vol. IX. IARC Scientific Publications. No.160. Lyon: IARC, 2007.

2. Schedin P., Borges V. Breaking down barriers: the importance of the stromal microenvironment in acquiring invasiveness in young women's breast cancer. Breast Cancer Res 2009;11(2):102.

3. Wang S., Chen C., Meng Y. et al. Effective suppression of breast tumor growth by an anti- EGFR/ErbB2 bispecific antibody. Cancer Lett 2012;325(2):214–9.

4. Song Y., Dai F., Zhai D. et al. Usnic acid inhibits breast tumor angiogenesis and growth by suppress- ing VEGFR2-mediated AKT and ERK1/2 signal- ing pathways. Angiogenesis 2012;15(3):421–32.

5. Zhao Y.C., Ni X.J., Wang M.H. et al. Tu- mor-derived VEGF-C, but not VEGF-D, promotes sentinel lymph node lymphangiogenesis prior to metastasis in breast cancer patients. Med Oncol 2012;29(4):2594–600.

6. Bayoudh L., Afrit M., Daldoul O. et al. Trastuzumab (herceptin) for the medical treat- ment of breast cancer. Tunis Med 2012;90(1):6–12.

7. Han S.W., Cha Y., Paquet A. et al. Correla- tion of HER2, p95HER2 and HER3 expres- sion and treatment outcome of lapatinib plus capecitabine in her2-positive metastatic breast cancer. PLoS One 2012;7(7):e39943.

8. Amiri-KordestaniL.,TanA.R.,SwainS.M. Pazopanib for the treatment of breast cancer. Expert Opin Investig Drugs 2012;21(2):217–25.

9. Perez E.A., Spano J.P. Current and emerg- ing targeted therapies for metastatic breast can- cer. Cancer 2012;118(12):3014–25.

10. Dai Y., Hogan S., Schmelz E.M. et al. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR ex- pression. Nutr Cancer 2011;63(5):795–801.

11. Liu Z.B., Hou Y.F., Zhu J. et al. Inhibition of EGFR pathway signaling and the metastatic potential of breast cancer cells by PA-MSHA mediated by type 1 fimbriae via a mannose-de- pendent manner. Oncogene 2010;29(20):2996– 3009.

12. Kim S., Han J., Lee S.K. et al. Smad7 acts as a negative regulator of the epidermal growth factor (EGF) signaling pathway in breast can- cer cells. Cancer Lett 2012;314(2):147–54.

13. Tunca B., Egeli U., Cecener G. et al. CK19, CK20, EGFR and HER2 status of cir- culating tumor cells in patients with breast can- cer. Tumori 2012;98(2):243–51.

14. Runkle K.B., Meyerkord C.L., Desai N.V. et al. Bif-1 suppresses breast cancer cell migra- tion by promoting EGFR endocytic degrada- tion. Cancer Biol Ther 2012;13(10):956–66.

15. Jiang Q., Zhou C., Bi Z., Wan Y. EGF-in- duced cell migration is mediated by ERK and PI3K/AKT pathways in cultured human lens epithelial cells. J Ocul Pharmacol Ther 2006;22(2):93–102.

16. Ryan P.D., Goss P.E. The emerging role of the insulin-like growth factor pathway as a therapeutic target in cancer. Oncologist 2008;13(1):16–24.

17. Narumiya S., Sugimoto Y., Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev 1999;79(4): 1193–226.

18. Araki K., Hashimoto K., Ardyanto T.D. Co-expression of Cox-2 and EGFR in stage I human bronchial adenocarcinomas. Lung Cancer 2004;45(2):161–9.

19. Ceccarelli C., Piazzi G., Paterini P. Concurrent EGFr and Cox-2 expression in colorectal cancer: proliferation impact and

20. tumour spreading. Ann Oncol 2005; 16(4):74–9.

21. Kang J.H., Song K.H., Jeong K.C. et al. Involvement of COX-2 in the metastatic poten- tial of chemotherapy-resistant breast cancer cells. BMC Cancer 2011;11:334.

22. Wang Y.X., Gao J.X., Wang X.Y. et al. Antiproliferative effects of selective cyclooxy- genase-2 inhibitor modulated by nimotuzumab in estrogen-dependent breast cancer cells. Tumour Biol 2012;33(4):957–66.

23. Dannenberg A.J., Lippman S.M., Mann J.R. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol 2005;23(2):254–66.

24. Kalous O., Conklin D., Desai A.J. et al. Dacomitinib (PF-00299804), a irreversible pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resis- tant to trastuzumab and lapatinib. Mol Cancer Ther 2012;11(9):1978–87.

25. Wagner A.D., Thomssen C., Haerting J., Unverzagt S. Vascular-endothelial-growth-fac- tor (VEGF) targeting therapies for endocrine refractory or resistant metastatic breast cancer. Cochrane Database Syst Rev 2012;7:CD008941.

26. Cybulski M., Jarosz B., Nowakowski A.

27. et al. Cyclin I correlates with VEGFR-2 and cell proliferation in human epithelial ovarian cancer. Gynecol Oncol 2012;127(1):217–22.

28. Raica M., Cimpean A.M., Ceausu R., Ribatti D. Lymphatic microvessel density, VEGF-C, and VEGFR-3 expression in differ- ent molecular types of breast cancer. Anticancer Res 2011;31(5):1757–64.

29. Smith N.R., Baker D., James N.H. et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized pri- marily to the vasculature in human primary solid cancers. Clin Cancer Res 2010;16(14):3548–61.

30. Sarkar S., Mazumdar A., Dash R. et al. ZD6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR-2, inhibits MAPK/ERK and AKT/PI3-K and induces apoptosis in breast cancer cells. Cancer Biol Ther 2010;9(8):592–603.

31. Valtola R., Salven P., Heikkilä P. et al. VEGFR-3 and its ligand VEGF-C are associ- ated with angiogenesis in breast cancer. Am J Pathol 1999;154(5):1381–90.

32. KarroumA.,MirshahiP.,FaussatA.M. et al. Tubular network formation by adriamycin-re- sistant MCF-7 breast cancer cells is closely linked to MMP-9 and VEGFR-2/VEGFR-3 over-expres- sions. Eur J Pharmacol 2012;685(1–3):1–7.

33. Su J.L., Yen C.J., Chen P.S. et al. The role of the VEGF-C/VEGFR-3 axis in cancer pro- gression. Br J Cancer 2007;96(4):541–5.

34. Davidson B., Stavnes H.T., Førsund M. et al. CD105 (Endoglin) expression in breast carcinoma effusions is a marker of poor survival. Breast 2010;19(6):493–8.

35. Smith A.L., Iwanaga R., Drasin D.J. et al. The miR-106b-25 cluster targets Smad7, acti- vates TGF-β signaling, and induces EMT and tumor initiating cell characteristics down- stream of Six1 in human breast cancer. Onco- gene 2012;31(50):5162–71.

36. Reinholz M.M., An M.W., Johnsen S.A. et al. Differential gene expression of TGF beta inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tis- sue. Breast Cancer Res Treat 2004;86(1):75–88.

37. Scollen S., Luccarini C., Baynes C. et al. TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2011;20(6):1112–9.

38. Oxmann D., Held-Feindt J., Stark A.M.

39. et al. Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 2008;27(25):3567–75.

40. Lee S.H., Mizutani N., Mizutani M. et al. Endoglin (CD105) is a target for an oral DNA vaccine against breast cancer. Cancer Immunol Immunother 2006;55(12):1565–74.

41. Fonsatti E., Jekunen A.P., Kairemo K.J. et al. Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin Cancer Res 2000;6(5):2037–43.

42. Shi Z., Yang W.M., Chen L.P. et al. Enhanced chemosensitization in multidrug- resistant human breast cancer cells by inhibi- tion of IL-6 and IL-8 production. Breast Cancer Res Treat 2012;135(3):737–47.

43. Jehn C.F., Flath B., Strux A. et al. Influ- ence of age, performance status, cancer activ- ity, and IL-6 on anxiety and depression in pa- tients with metastatic breast cancer. Breast Cancer Res Treat 2012;136(3):789–94.

44. Marrogi A.J., Munshi A., Merogi A.J. et al. Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prog- nostic factors in breast carcinoma. Int J Cancer 1997;74(5):492–501.

45. Knupfer H., Schmidt R., Stanitz D. et al. CYP2C and IL-6 expression in breast cancer. Breast 2004;13(1):28–34.

46. Ueno T., Toi M., Saji H. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 2000;6(8):3282–9.

47. Bachelot T., Ray-Coquard I., Menetrier- Caux C. et al. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hor- mone-refractory metastatic breast cancer pa- tients. Br J Cancer 2003;88(11):1721–6.

Для цитирования:

Таипов М.А., Никифорова З.Н., Кудрявцев И.А., Арноцкая Н.Е., Шевченко В.Е. Роль COX-2 в регуляции метастатического потенциала опухолевых клеток молочной железы человека. Опухоли женской репродуктивной системы. 2014;(1):8-14.

For citation:

Taipov M.A., Nikiforova Z.N., Kudryavtsev I.A., Arnotskaya N.Y., Shevchenko V.Y. Role of COX-2 in the regulation of the metastatic potential of human breast tumor cells. Tumors of female reproductive system. 2014;(1):8-14. (In Russ.)

Просмотров: 577

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)