Preview

Опухоли женской репродуктивной системы

Расширенный поиск

МикроРНК MiR-21 и MiR-155 – новые маркеры рака молочной железы

https://doi.org/10.17650/1994-4098-2013-0-3-4-6-11

Полный текст:

Аннотация

В клетке существует обширный класс регуляторных молекул, называемых микроРНК. В последнее время многие исследователи рассматривают микроРНК MiR-21 и MiR-155 в качестве новых потенциальных прогностических маркеров и мишеней для на- правленной терапии рака молочной железы (РМЖ). Обнаружено, что MiR-21 и MiR-155 регулируют метастатический потен- циал опухолевых клеток и дифференциально экспрессированы в клетках РМЖ. Наш обзор посвящен теоретическим предпосылкам и практическим результатам исследований MiR-21 и MiR-155 в качестве потенциальных молекулярных маркеров РМЖ.

Об авторах

М. А. Таипов
ФГБУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


З. Н. Никифорова
ФГБУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


К. П. Лактионов
ФГБУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


Н. Е. Левченко
ФГБУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


В. Е. Шевченко
ФГБУ «РОНЦ им. Н.Н. Блохина» РАМН, Москва
Россия


Список литературы

1. Шевченко В.Е. Современные масс- спектрометрические методы в ранней диагностике рака. Масс-спектрометрия 2004;1(2):103–26.

2. Шевченко В.Е., Таипов М.А., Ковалев С.В. и др. Картирование протеома лизата линии опухолевых клеток MCF-7 для идентификации потенциальных маркеров рака молочной железы. Опухоли женской репродуктивной системы 2012;(2):4–11.

3. Шевченко В.Е., Хасуева М., Поддубная И.В. и др. Масс-спектрометрическое профилирование низкомолекулярного протеома плазмы крови для обнаружения потенциальных маркеров рака молочной железы. Вестн РОНЦ 2011;22(3):27–33.

4. Шевченко В.Е., Таипов М.А., Ковалев С.В. и др. Анализ белков, ассоциированных с экспрессией циклооксигеназы-2 и биосинтезом PGE2 в клетках рака молочной железы с разным метастатическим потенциалом. Опухоли женской репродуктивной системы 2012;(3–4):19–29.

5. Kong W., Yang H., He L. et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008;28(22):6773–84.

6. Zhu S., Si M.L., Wu H., Mo Y.Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007;282(19):14328–36.

7. Yan L.X., Huang X.F., Shao Q. et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008;14(11):2348–60.

8. Mar-Aguilar F., Luna-Aguirre C.M., Moreno-Rocha J.C. et al. Differential expression of miR-21, miR-125b and miR-191 in breast cancer tissue. Asia Pac J Clin Oncol 2013;9(1):53–9.

9. Negrini M., Calin G.A. Breast cancer metastasis: a micro RNA story. Breast Cancer Res 2008;10(2):203.

10. Han M., Wang Y., Liu M. et al. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 2012;103(6):1058–64.

11. Savad S., Mehdipour P., Miryounesi M. et al. Expression analysis of MiR-21, MiR-205, and MiR-342 in breast cancer in Iran. Asian Pac J Cancer Prev 2012;13(3):873–7.

12. Selcuklu S.D., Donoghue M.T., Kerin M.J., Spillane C. Regulatory interplay between miR- 21, JAG1 and 17beta-estradiol (E2) in breast cancer cells. Biochem Biophys Res Commun 2012;423(2):234–9.

13. Wang J., Wu J. Role of miR-155 in breast cancer. Front Biosci 2012;17:2350–5.

14. Zheng S.R., Guo G.L., Zhang W. et al. Clinical significance of miR-155 expression in breast cancer and effects of miR-155 ASO on cell viability and apoptosis. Oncol Rep 2012;27(4):1149–55.

15. Iorio M.V., Ferracin M., Liu C.G. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65(16):7065–70.

16. Roldo C., Missiaglia E., Hagan J.P. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006;24(29):4677–84.

17. Volinia S., Calin G.A., Liu C.G. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103(7):2257–61.

18. Bloomston M., Frankel W.L., Petrocca F. et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007;297(17):1901–8.

19. Nelson P.T., Baldwin D.A., Scearce L.M. et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 2004;1(2):155–61.

20. Yu Y., Wang Y., Ren X. et al. Context- dependent bidirectional regulation of the MutS homolog 2 by transforming growth factor β contributes to chemoresistance in breast cancer cells. Mol Cancer Res 2010; 8(12):1633–42.

21. Liu G., Friggeri A., Yang Y. et al. MiR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010;207(8):1589–97.

22. Si M.L., Zhu S., Wu H. et al. miR-21- mediated tumor growth. Oncogene 2007;26(19):2799–803.

23. Chan J.A., Krichevsky A.M., Kosik K.S. et al. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65(14):6029–33.

24. Zhu S., Wu H., Wu F. et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008;18(3):350–9.

25. Kim Y.J., Hwang S.J., Bae Y.C., Jung J.S. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009;27(12):3093–102.

26. Wang J., Li Y., Wang X., Jiang C. Ursolic acid inhibits proliferation and induces apoptosis in human glioblastoma cell lines U251 by suppressing TGF-1/miR-21/ PDCD4 pathway. Basic Clin Pharmacol Toxicol 2012;111(2):106–12.

27. Ardite E., Perdiguero E., Vidal B. et al. PAI-1-regulated miR-21 defines a novel age- associated fibrogenic pathway in muscular dystrophy. J Cell Biol 2012;196(1):163–75.

28. Wang T., Zhang L., Shi C. et al. TGF-- induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF- in HaCaT cells. Int J Biochem Cell Biol 2012;44(2):366–76.

29. Kumarswamy R., Volkmann I., Jazbutyte V. et al. Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol 2012;32(2):361–9.

30. Zhong X., Chung A.C., Chen H.Y. et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 2011;22(9):1668–81.

31. Eddy A.A. The TGF-β route to renal fibrosis is not linear: the miR-21 viaduct. J Am Soc Nephrol 2011;22(9):1573–5.

32. Han M., Liu M., Wang Y. et al. Re- expression of miR-21 contributes to migration and invasion by inducing epithelial- mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem 2012;363(1–2):427–36.

33. Mattiske S., Suetani R.J., Neilsen P.M., Callen D.F. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev 2012;21(8):1236–43.

34. Jiang S., Zhang H.W., Lu M.H. et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 2010;70(8):3119–27.

35. Yin Q., Wang X., Fewell C. et al. MicroRNA miR-155 inhibits bone morphogenetic protein (BMP) signaling and BMP-mediated Epstein-Barr virus reactivation. J Virol 2010;84(13):6318–27.

36. Aggarwal B.B., Vijayalekshmi R.V., Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long- term foe. Clin Cancer Res 2009;15(2):425–30.

37. Xiao B., Liu Z., Li B.S. et al. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 2009;200(6):916–25.

38. Bolisetty M.T., Dy G., Tam W., Beemon K.L. Reticuloendotheliosis virus strain T induces miR-155 which targets JARID2 and promotes cell survival. J Virol 2009;83(23):12009–17.

39. Yoshikawa H., Matsubara K., Qian G.S. et al. SOCS-1, a negative regulator of the JAK/ STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001;28(1):29–35.

40. Lee T.L., Yeh J, Van Waes C, Chen Z. Epigenetic modification of SOCS-1 differentially regulates STAT3 activation in response to interleukin-6 receptor and epidermal growth factor receptor signaling through JAK and/or MEK in head and neck squamous cell carcinomas. Mol Cancer Ther 2006;5(1):8–19.

41. Clevenger C.V. Roles and regulation of stat family transcription factors in human breast cancer. Am J Pathol 2004;165(5):1449–60.

42. Lee R.C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294(5543):862–4.

43. Lee H.J., Maeng K., Dang H.T. et al. Anti- inflammatory effect of methyl dehydrojasmonate (J2) is mediated by the NF-κB pathway. J Mol Med (Berl) 2011;89(1):83–90.

44. Stefani G., Slack F.J. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008;9(3):219–30.

45. Metzler M., Wilda M., Busch K. et al. High expression of precursor microRNA-155/ BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004;39(2):167–9.

46. Tam W., Ben-Yehuda D., Hayward W.S. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 1997;17(3):1490–502.

47. Eis P.S., Tam W., Sun L. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 2005;102(10):3627–32.

48. Costinean S., Sandhu S.K., Pedersen I.M. et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer- binding protein β are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009;114(7):1374–82.

49. Gironella M., Seux M., Xie M.J. et al. Tumor protein 53-induced nuclear protein expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 2007;104(41):16170–5.

50. Nikiforova M.N., Tseng G.C., Steward et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008;93(5):1600–8.

51. Yanaihara N., Caplen N., Bowman E. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9(3):189–98.

52. Greither T., Grochola L., Udelnow A. et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumours associates with poorer survival. Int J Cancer 2010;126(1):73–80

53. Esquela-Kerscher A., Slack F.J. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.

54. Kent O.A., Mendell J.T. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006;25(46):6188–96.

55. Kong W., Yang H., He L. et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008;28(22):6773–84.

56. Vigorito E., Perks K.L., Abreu-Goodger C. et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007;27(6):847–59.

57. Rodriguez A., Vigorito E., Clare S. et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007;316(5824):608–11.

58. Teng G., Hakimpour P., Landgraf P. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 2008;28(5):621–9.

59. Ceppi M., Pereira P.M., Dunand-Sauthier I. et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA 2009;106(8):2735–40.

60. Lu F., Weidmer A., Liu C.G. et al. Epstein- Barr virus-induced miR-155 attenuates NF- kappaB signaling and stabilizes latent virus persistence. J Virol 2008;82(21):10436–43.

61. Romania P., Lulli V., Pelosi E. et al. MicroRNA-155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br J Haematol 2008;143(4):570–80.

62. Song C.G., Wu X.Y., Fu F.M. et al. Correlation of miR-155 on formalin-fixed paraffin embedded tissues with invasiveness and prognosis of breast cancer. Zhonghua Wai Ke Za Zhi 2012;50(11):1011–4.


Для цитирования:


Таипов М.А., Никифорова З.Н., Лактионов К.П., Левченко Н.Е., Шевченко В.Е. МикроРНК MiR-21 и MiR-155 – новые маркеры рака молочной железы. Опухоли женской репродуктивной системы. 2013;(3-4):6-11. https://doi.org/10.17650/1994-4098-2013-0-3-4-6-11

For citation:


Taipov M.A., Nikiphorova Z.N., Laktionov K.P., Levchenko N.E., Shevchenko V.E. MicroRNA MiR-21 and MiR-155 are new markers for breast cancer. Tumors of female reproductive system. 2013;(3-4):6-11. (In Russ.) https://doi.org/10.17650/1994-4098-2013-0-3-4-6-11

Просмотров: 243


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)