The comparison of the radiation load to the heart and the left anterior descending coronary artery for various modes of radiation treatment of the breast cancer patients
https://doi.org/10.17650/1994-4098-2016-12-3-10-16
Abstract
Objective: the comparison of the radiation load to the organs at risk for three modes of radiation treatment of the breast cancer patients.
Materials and methods. The research includes the dosimetric radiation treatment plans for the 20 breast cancer patients with the left-side localization. They all underwent a computed tomography (CT) scan in standard supine position in free-breathing (FB), supine position with active breathing control (ABC) device in deep inspiratory breath hold, and prone position in free-breathing (PP). Three-dimensional treatment plans were made for all 3 CTs. The dose valuations for 3D-planning were carried out for three CT-series. For each mode of radiation the doze-volume parameters of organs at risk were estimated: heart volume exposed to more than 25 Gy (V25 heart), mean dose (Dmean) to the heart and left anterior descending coronary artery (LAD).
Results. For all cases the contoured heart volume varied from 477–1056 cm3, with medium volume 769 cm3. The best marks such as V25 heart, Dmean heart and Dmean LAD, were achieved with on supine position with ABC method (4.25 %, 3.13 Gy, 1.3 Gy, respectively) in comparison with FB (9.49 %, 4.96 Gy, 1.95 Gy, respectively) and PP (12.8 %, 9.06 Gy, 24.18 Gy, respectively) (V25 heart: p = 0.00153; Dmean heart: p = 0,000; Dmean LAD: p = 0.00088), when both the breast and the axillary nodes were included in the volume. The advantage of the dosimetric indexes for FB and ABC did not change while axillary and supraclavicular nodes were added to the radiation volume ABC (V25 heart 3.49 %, Dmean heart 3.07 Gy, Dmean LAD 13.8 Gy) in comparison with FB methods (V25 heart 7.91 %, Dmean heart 4.99 Gy, Dmean LAD 19.89 Gy) (V25 heart: p = 0.00205; Dmean heart: p = 0.004; Dmean LAD: p = 0.03).
Conclusion. Radiation treatment of the breast cancer patients in the position with ABC contributed to the statistically significant reduction of the dosimetric parameters: V25 heart, Dmean heart and Dmean LAD.
About the Authors
A. V. BondarenkoRussian Federation
70 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg, 197758
L. I. Korytova
Russian Federation
70 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg, 197758
E. A. Maslyukova
Russian Federation
70 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg, 197758
O. V. Korytov
Russian Federation
70 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg, 197758
E. M. Muravnik
Russian Federation
70 Leningradskaya St., Pesochnyy Settlement, Saint Petersburg, 197758
References
1. Fisher B., Anderson S., Bryant J. et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 2002;347(16):1233–41. DOI: 10.1056/NEJMoa022152. PMID: 12393820.
2. Clarke M., Collins R., Darby S. et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials. Lancet 2005;366(9503):2087–106. DOI: 10.1016/S0140-6736(05)67887-7. PMID: 16360786.
3. Taylor C.W., Povall J.M., McGale P. et al. Cardiac dose from tangential breast cancer radiotherapy in the year 2006. Int J Radiat Oncol Biol Phys 2008;72(2):501–7. DOI: 10.1016/j.ijrobp.2007.12.058. PMID: 18374500.
4. Schubert L.K., Gondi V., Sengbusch E. et al. Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forwardplanned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy. Radiother Oncol 2011;100(2):241–6. DOI: 10.1016/j.radonc.2011.01.004. PMID: 21316783.
5. Yin Y., Chen J., Sun T. et al. Dosimetric research on intensity-modulated arc radiotherapy planning for left breast cancer after breast-preservation surgery. Med Dosim 2012;37(3):287–92. DOI: 10.1016/j.meddos.2011.11.001. PMID: 22284640.
6. Muren L.P., Maurstad G., Hafslund R. et al. Cardiac and pulmonary doses and complication probabilities in standard and conformal tangential irradiation in conservative management of breast cancer. Radiother Oncol 2002;62(2):173–83. PMID: 11937244.
7. Ares C., Khan S., Macartain A.M. et al. Postoperative proton radiotherapy for localized and locoregional breast cancer: potential for clinically relevant improvements? Int J Radiat Oncol Biol Phys 2010;76(3):685–97. DOI: 10.1016/j.ijrobp.2009.02.062. PMID: 19615828.
8. Hayden A.J., Rains M., Tiver K. Deep inspiration breath hold technique reduces heart dose from radiotherapy for left-sided breast cancer. J Med Imaging Radiat Oncol 2012;56(4):464–72. DOI: 10.1111/j.1754-9485.2012.02405.x. PMID: 2288365.
9. Darby S.C., Ewertz M., McGale P. et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. New Engl J Med 2013;368(11):987–98. DOI: 10.1056/NEJMoa1209825. PMID: 23484825.
10. Korreman S.S., Pederson A.N., Aarup L.R. et al. Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 2006;65(5): 1375–80. DOI: 10.1016/j.ijrobp.2006.03.046. PMID: 16750314.
11. Kirby A.M., Evans P.M., Donovan E.M. et al. Prone versus supine positioning for whole and partial breast radiotherapy: a comparison of non-target tissue dosimetry. Radiother Oncol 2010;96(2):178–84. DOI: 10.1016/j.radonc.2010.05.014. PMID: 20561695.
12. Lymberis S.C., deWyngaert J.K., Parhar P. et al. Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: volumetric and dosimetric correlations in 100 patients. Int J Radiat Oncol Biol Phys 2012;84(4):902–9. DOI: 10.1016/j.ijrobp.2012.01.040. PMID: 22494590.
13. Buijsen J., Jager J.J., Bovendeerd J. et al. Prone breast irradiation for pendulous breasts. Radiother Oncol 2007;82(3):337–40. PMID: 16978722.
14. Feng M., Moran J.M., Koelling T. et al. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys 2011;79(1):10–8. DOI: 10.1016/j.ijrobp.2009.10.058. PMID: 20421148.
15. Formenti S.C., DeWyngaert J.K., Jozsef G., Goldberg J.D. Prone vs supine positioning for breast cancer radiotherapy. JAMA 2012;308(9):861–3. DOI: 10.1001/2012.jama.10759. PMID: 22948692.
16. Griem K.L., Fetherston P., Kuznetsova M. et al. Three-dimensional photon dosimetry: a comparison of treatment of the intact breast in the supine and prone position. Int J Radiat Oncol Biol Phys 2003;57(3):891–9. PMID: 14529796.
17. Kirby A.M., Evans P.M., Helyer S.J. et al. A randomised trial of supine versus prone breast radiotherapy (SuPr study): comparing set-up errors and respiratory motion. Radiother Oncol 2011;100(2):221–6. DOI: 10.1016/j.radonc.2010.11.005. PMID: 21159397.
18. Korreman S.S., Pedersen A.N., Nottrup T.J. et al. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique. Radiother Oncol 2005;76(3):311–8. DOI: 10.1016/j.radonc.2005.07.009. PMID: 16153728.
19. Mason N., Macfarlane D., Guidi R. et al. A prone technique for treatment of the breast, supraclavicular and axillary nodes. J Med Imaging Radiat Oncol 2012;56(3):362–7. DOI: 10.1111/j.1754-9485.2012.02389.x. PMID: 22697337.
20. Pedersen A.N., Korreman S., Nyström H., Specht L. Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold. Radiother Oncol 2004;72(1):53–60. DOI: 10.1016/j.radonc.2004.03.012. PMID: 15236874.
21. Stegman L.D., Beal K.P., Hunt M.A. et al. Long-term clinical outcomes of whole-breast irradiation delivered in the prone position. Int J Radiat Oncol Biol Phys 2007;68(1):73–81. DOI: 10.1016/j.ijrobp.2006.11.054. PMID: 17337131.
22. Verhoeven K., Sweldens C., Petillion S. et al. Breathing adapted radiation therapy in comparison with prone position to reduce the doses to the heart, left anterior descending coronary artery, and contralateral breast in whole breast radiation therapy. Pract Radiat Oncol 2014;4(2): 123–9. DOI: 10.1016/j.prro.2013.07.005. PMID: 24890353.
23. Chino J.P., Marks L.B. Prone positioning causes the heart to be displaced anteriorly within the thorax: implications for breast cancer treatment. Int J Radiat Oncol Biol Phys 2008;70(3):916–20. DOI: 10.1016/j.ijrobp.2007.11.001. PMID: 18262103.
24. Remouchamps V.M., Vicini F.A., Sharpe M.B. et al. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity- modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys 2003;55(2):392–406. PMID: 12527053.
25. Latty D., Stuart K.E., Wang W., Ahern V. Review of deep inspiration breath-hold techniques for the treatment of breast cancer. J Med Radiat Sci 2015;62(1):74–81. DOI: 10.1002/jmrs.96. PMID: 26229670.
26. Vikström J., Hjelstuen M.H., Mjaaland I., Dybvik K.I. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage. Acta Oncol 2011;50(1):42–50. DOI: 10.3109/0284186X.2010.512923. PMID: 20843181.
Review
For citations:
Bondarenko A.V., Korytova L.I., Maslyukova E.A., Korytov O.V., Muravnik E.M. The comparison of the radiation load to the heart and the left anterior descending coronary artery for various modes of radiation treatment of the breast cancer patients. Tumors of female reproductive system. 2016;12(3):10-16. (In Russ.) https://doi.org/10.17650/1994-4098-2016-12-3-10-16