Preview

Tumors of female reproductive system

Advanced search

REPARATION SYSTEM GENES: POPULATION DIFFERENCES IN HEREDITARY OVARIAN AND BREAST CANCER DETERMINED BY NEXT-GENERATION SEQUENCING

https://doi.org/10.17650/1994-4098-2017-13-2-61-67

Abstract

Introduction. Development of hereditary ovarian cancer (OC) and breast cancer (BC) is caused by genetic abnormalities in the DNA reparation system consisting of more than 100 genes. However, currently in the majority of medical centers in Russia, diagnosis of hereditary OC and BC consists of determination of the most frequent mutations (8 points) in the BRCA1 and BRCA2 genes using polymerase chain reaction (PCR). Moreover, these mutations are common in Slavic population while in other populations they are rare or altogether absent.

The study objective is to perform a population analysis of mutations in the reparation system genes which must be considered during chemotherapy prescription.

Materials and methods. Using next-generation sequencing (NGS), we analyzed reparation system genes in 139 blood samples of Tatar female patients with hereditary OC and BC. To compare mutation rates, 67 blood samples from Slavic female patients examined at the Federal Research Clinical Center FMBA (Moscow) in 2014-2016 were analyzed by real-time PCR.

Results. Real-time PCR has shown a 5382insC (NM_007300.3:c.5329dup)  mutation in 36 % of Slavic patients. The same mutation was observed only in 7 % of Tatar women. Performed NGS analysis of 139 Tatar female patients with hereditary BC and OC has identified 61 mutations in the reparation system genes, one third of which (28 %) didn’t belong to the BRCA1/BRCA2 genes.

Conclusion. The NGS method allowed to identify rare mutations characterizing different ethnic groups facilitating prescription of optimal chemotherapy.

About the Authors

O. I. Brovkina
Federal Research Clinical Center for specialized types of health care and medical technologies FMBA
Russian Federation

28 Orekhoviy Av., Moscow 115682



M. G. Gordiev
Republican Clinical Dispensary, Ministry of Health of Russia
Russian Federation

29 Siberian Tract, Kazan 420029, Republic of Tatarstan



R. F. Enikeev
Republican Clinical Dispensary, Ministry of Health of Russia
Russian Federation

29 Siberian Tract, Kazan 420029, Republic of Tatarstan



M. O. Druzhkov
Republican Clinical Dispensary, Ministry of Health of Russia
Russian Federation

29 Siberian Tract, Kazan 420029, Republic of Tatarstan



L. Kh. Shigapova
Kazan (Volga Region) Federal University, Ministry of Education of Russia; Institute of Physical and Chemical Research RIKEN
Russian Federation

18 Kremlevskaya St., Kazan 420008, Republic of Tatarstan; 1-7-22 Suehiro-cho, Tsurumi-ku 230-0045 Yokohama City, Kanagawa



E. I. Shagimardanova
Kazan (Volga Region) Federal University, Ministry of Education of Russia; Institute of Physical and Chemical Research RIKEN
Russian Federation

18 Kremlevskaya St., Kazan 420008, Republic of Tatarstan; 1-7-22 Suehiro-cho, Tsurumi-ku 230-0045 Yokohama City, Kanagawa



O. А. Gusev
Kazan (Volga Region) Federal University, Ministry of Education of Russia; Institute of Physical and Chemical Research RIKEN
Russian Federation

18 Kremlevskaya St., Kazan 420008, Republic of Tatarstan; 1-7-22 Suehiro-cho, Tsurumi-ku 230-0045 Yokohama City, Kanagawa



V. V. Kosiy
Federal Research Clinical Center for specialized types of health care and medical technologies FMBA
Russian Federation

28 Orekhoviy Av., Moscow 115682



D. S. Khodyrev
Federal Research Clinical Center for specialized types of health care and medical technologies FMBA
Russian Federation

28 Orekhoviy Av., Moscow 115682



A. G. Kedrova
Federal Research Clinical Center for specialized types of health care and medical technologies FMBA
Russian Federation

28 Orekhoviy Av., Moscow 115682



R. Sh. Khasanov
Kazan State Medical Academy – branch of the Russian Medical Academy of Postgraduate Education
Russian Federation

11 Mushtari St., Kazan 420012, Republic of Tatarstan



A. G. Nikitin
Federal Research Clinical Center for specialized types of health care and medical technologies FMBA
Russian Federation

28 Orekhoviy Av., Moscow 115682



References

1. Scalia-Wilbur J., Colins B.L., Penson R.T., Dizon D.S. Breast Cancer Risk Assessment: Moving Beyond BRCA 1 and 2. Semin Radiat Oncol 2016; 26(1):3–8. DOI: 10.1016/j.semradonc.2015.09.004.

2. Имянитов Е.Н. Наследственный рак молочной железы: Практическая онкология 2010;11(4):258–266. [Imyanitov E.N. Hereditary breast cancer. Prakticheskaya onkologiya = Practical Oncology 2010;11(4):258–266. (In Russ.)].

3. Crafton S. M., Bixel K., Hays J.L. PARP inhibition and gynecologic malignancies: A review of current literature and on-going trials. Gynecol Oncol 2016;142(3):588–596. DOI: 10.1016/j.ygyno.2016.05.003.

4. Livraghi L, Garber J.E. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med 2015;13:188. DOI: 10.1186/s12916-015-0425-1.

5. Foretova L., Machackova E., Navratilova M. et al. BRCA1 and BRCA2 mutations in women with familial or early-onset breast/ovarian cancer in the Czech Republic. Hum Mutat 2004;23(4): 397–398. DOI: 10.1002/humu.9226.

6. Хасанова А.И., Гордиев М.Г., Ратнер Е.Ю. и др. BRCA-ассоциированный рак молочной железы у представительниц татарской национальности на примере клинического случая. Приволжский онкологический вестник 2016;24(2):104–108. [Khasanova A.I., Gordiev M.G., Ratner E.Yu. et al. Clinical report of BRCA-associated breast cancer among representative of the tatar nationality group. Privolzhskiy onkologicheskiy vestnik = Oncology Bulletin of the Volga Region 2016;24(2):104–108. (In Russ.)].

7. Fackenthal J.D., Olopade O.I. Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer 2007;7(12):937–948. DOI: 10.1038/nrc2054.

8. Matsuda S. Defective DNA repair systems and the development of breast and prostate cancer (Review). Int J Oncol 2013; 42(1):29–34. DOI: 10.3892/ijo.2012.1696.

9. Cybulski C., Wokołorczyk D., Jakubowska A. et al. Risk of Breast Cancer in Women With a CHEK2 Mutation With and Without a Family History of Breast Cancer. J Clin Oncol 2011;29(28): 3747–3752. DOI: 10.1200/JCO.2010.34.0778.

10. Desrichard A., Bidet Y., Uhrhammer N., Bignon Y.-J. CHEK2 contribution to hereditary breast cancer in non-BRCA families. Breast Cancer Res 2011;13:R119. DOI: 10.1186/bcr3062.

11. Friedrichsen D.M., Malone K.E., Doody D.R. et al. Frequency of CHEK2 mutations in a population based, case–control study of breast cancer in young women. Breast Cancer Res 2004;6(6):R629–R635. DOI: 10.1186/bcr933.

12. Nevanlinna H., Bartek J. The CHEK2 gene and inherited breast cancer susceptibility. Oncogene 2006;25(43):5912–5919. DOI: 10.1038/sj.onc.1209877.

13. Clague J., Wilhoite G., Adamson A. et al. RAD51C Germline Mutations in Breast and Ovarian Cancer Cases from High-Risk Families. PLoS ONE 2011;6(9):e25632. DOI: 10.1371/journal.pone.0025632.

14. Lu W., Wang X., Lin H. et al. Mutation screening of RAD51C in high-risk breast and ovarian cancer families. Fam Cancer 2012;11(3):381–385. DOI: 10.1007/s10689-012-9523-9.

15. Rennert G., Lejbkowicz F., Cohen I. et al. MutYH mutation carriers have increased breast cancer risk. Cancer 2012;118(8):1989–1993. DOI: 10.1002/cncr.26506.

16. Boesaard E.P., Vogelaar I.P., Bult P. et al. Germline MUTYH gene mutations are not frequently found in unselected patients with papillary breast carcinoma. Hered Cancer Clin Pract 2014;12:21. DOI: 10.1186/1897-4287-12-21.

17. Clark S.L., Rodriguez A.M., Snyder R.R. et al. Structure-Function of the Tumor Suppressor BRCA1. Comput Struct Biotechnol J 2012;1. DOI: 10.5936/csbj.201204005.

18. Nelson A.C., Holt J.T. Impact of RING and BRCT Domain Mutations on BRCA1 Protein Stability, Localization, and Recruitment to DNA Damage. Radiat Res 2010;174(1):1–13. DOI: 10.1667/RR1290.1.

19. Chai Y.L., Cui J., Shao N. et al. The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene 1999;18(1):263–8. DOI: 10.1038/sj.onc.1202323.

20. Clapperton J.A., Manke I.A., Lowery D.M. et al. Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat Struct Mol Biol 2004;11(6):512–518. DOI: 10.1038/nsmb775.

21. Cao W., Wang X., Gao Y. et al. BRCA1 germ-line mutations and tumor characteristics in eastern Chinese women with familial breast cancer. Anat Rec Hoboken NJ 2007. 2013;296(2):273–278. DOI: 10.1002/ar.22628.

22. Cao W.-M., Gao Y., Yang H.-J. et al. Novel germline mutations and unclassified variants of BRCA1 and BRCA2 genes in Chinese women with familial breast/ovarian cancer. BMC Cancer 2016;16:64. DOI: 10.1186/s12885-016-2107-6.


Review

For citations:


Brovkina O.I., Gordiev M.G., Enikeev R.F., Druzhkov M.O., Shigapova L.Kh., Shagimardanova E.I., Gusev O.А., Kosiy V.V., Khodyrev D.S., Kedrova A.G., Khasanov R.Sh., Nikitin A.G. REPARATION SYSTEM GENES: POPULATION DIFFERENCES IN HEREDITARY OVARIAN AND BREAST CANCER DETERMINED BY NEXT-GENERATION SEQUENCING. Tumors of female reproductive system. 2017;13(2):61-67. (In Russ.) https://doi.org/10.17650/1994-4098-2017-13-2-61-67

Views: 1184


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)