EVALUATION OF EXPRESSION OF 4 MIRNAS IN CYTOLOGICAL SAMPLES AS AN ADDITIONAL METHOD OF CERVICAL CANCER DIAGNOSIS
https://doi.org/10.17650/1994-4098-2017-13-3-63-72
Abstract
Introduction. Cervical cancer is the 4th most common cancer among women. The main screening method for cervical cancer is cytological examination of the cervical epithelium. This method allows to evaluate the level of cervical dysplasia (malignant potential) but it has several limitations and flaws. Development and implementation of new methods of molecular and genetic analysis in clinical practice can increase informational value of the traditional cytological examination and therefore objectivity in choosing treatment options.
Objective is to develop and verify a new method of differential diagnosis of severe intraepithelial dysplasia and invasive cervical cancer.
Materials and methods. The method is based on analysis of small non-coding RNA molecules (miRNAs) extracted from the material of traditional Pap smears. Based on literature search, 18 “marker” microRNA molecules were chosen and their expression levels were estimated in 166 samples of Pap smears from cervical canals with different cytological diagnoses. The analysis was performed using reverse transcription polymerase chain reaction.
Results. Estimation of ratios between expression levels of miRNA pairs: 126/375; 20а/375; 126/145 allows to differentiate with high confidence borderline states of severe intraepithelial dysplasia and invasive cervical carcinoma (coefficients of quantitative interpretation of the error curve were 0.8, 0.75, 0.72, respectively).
Conclusions. Analysis of miRNAs in Pap smear samples is a promising additional method of cervical cancer diagnosis. The method is objective and can be proposed as a supporting technique in cases when cytological examination doesn’t allow to differentiate between borderline pathological states of the cervical epithelium. Implementation of the method in clinical practice requires methodological optimization and additional validation using more clinical material.
About the Authors
P. A. ArkhangelskayaRussian Federation
68 Leningradskaya St., Pesochnyi Settlement, Saint Petersburg 197758; 41 Kirochnaya St., Saint Petersburg 191015
R. B. Samsonov
Russian Federation
68 Leningradskaya St., Pesochnyi Settlement, Saint Petersburg 197758; Room 16, 4–9 Lugovaya St., Skolkovo Innovation Center, Moscow, 143026
T. A. Shtam
Russian Federation
68 Leningradskaya St., Pesochnyi Settlement, Saint Petersburg 197758; Room 16, 4–9 Lugovaya St., Skolkovo Innovation Center, Moscow, 143026
M. S. Knyazeva
Russian Federation
68 Leningradskaya St., Pesochnyi Settlement, Saint Petersburg 197758; Room 16, 4–9 Lugovaya St., Skolkovo Innovation Center, Moscow, 143026
M. K. Ivanov
Russian Federation
Acad. Lavrentiev Ave. 8/2 Novosibirsk, 630090; ABK zone, Koltsovo Settlement, Novosibirsk District 630559
S. E. Titov
Russian Federation
Acad. Lavrentiev Ave. 8/2 Novosibirsk, 630090; ABK zone, Koltsovo Settlement, Novosibirsk District 630559
N. N. Kolesnikov
Russian Federation
Acad. Lavrentiev Ave. 8/2 Novosibirsk, 630090
E. V. Bakhidze
Russian Federation
68 Leningradskaya St., Pesochnyi Settlement, Saint Petersburg 197758; 41 Kirochnaya St., Saint Petersburg 191015
I. V. Berlev
Russian Federation
68 Leningradskaya St., Pesochnyi Settlement, Saint Petersburg 197758; 41 Kirochnaya St., Saint Petersburg 191015
A. А. Mikhetko
Russian Federation
68 Leningradskaya St., Pesochnyi Settlement, Saint Petersburg, 197758
S. L. Vorobyev
Russian Federation
8/2 (A) Oleko Dundich St., Saint Petersburg 192283
A. V. Malek
Russian Federation
68 Leningradskaya St., Pesochnyi Settlement, Saint Petersburg 197758; Room 16, 4–9 Lugovaya St., Skolkovo Innovation Center, Moscow, 143026
References
1. Ferlay J., Soerjomataram I., Ervik M. et al. GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. Lyon, France: International Agency for Research on Cancer, 2013.
2. Ferlay J., Soerjomataram I., Dikshit R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5):E359–86. DOI: 10.1002/ijc.29210. PMID: 25220842.
3. Churilla T., Egleston B., Dong Y., Shaikh T., Murphy C., Mantia-Smaldone G., Chu C., Rubin S., Anderson P. Disparities in the management and outcome of cervical cancer in the United States according to health insurance status. Gynecol Oncol 2016;141(3):516–23. DOI: 10.1016/j.ygyno.2016.03.025. PMID: 27012428.
4. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2012 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена, 2014. [Kaprin A.D., Starinskiy V.V., Petrova G.V. Malignant neoplasms in Russia in 2012 (morbidity and mortality). Moscow: MNIOI imeni P.A. Hertzena, 2014. (In Russ.)].
5. Solomon D., Davey D., Kurman R. et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. Jama 2002;287(16):2114–9. PMID: 11966386.
6. Nayar R., Wilbur D.C. The Pap test and Bethesda 2014. Cancer cytopathol 2015;123(5):271–81. DOI: 10.1002/cncy.21521. PMID: 25931431.
7. Waxman A.G., Chelmow D., Darragh T.M. et al. Revised terminology for cervical histopathology and its implications for management of high-grade squamous intraepithelial lesions of the cervix. Obstetrics and gynecology 2012;120(6):1465–71. DOI: 10.1097/AOG.0b013e31827001d5. PMID: 23168774.
8. Савельева Г.М., Сухих Г.Т., Манухина И.Б. Гинекология: национальное руководство. Краткое издание. М.: ГЭОТАР-Медиа; 2015. [Savelieva G.M., Sukhikh G.T., Manukhina I.B. Gynecology: National guidelines. Abridged edition. М.: GEOTAR-Media, 2015. (In Russ.)].
9. Li J., Liu Q., Clark L.H. et al. Deregulated miRNAs in human cervical cancer: functional importance and potential clinical use. Future oncol 2017;13(8):743–53. DOI: 10.2217/fon-2016-0328. PMID: 27806630.
10. Kanekura K., Nishi H., Isaka K., Kuroda M. MicroRNA and gynecologic cancers. J Obstet Gynaecol Res 2016;42(6):612–7. DOI: 10.1111/jog.12995. PMID: 27098274.
11. He Y., Lin J., Ding Y. et al. A systematic study on dysregulated microRNAs in cervical cancer development. Int J Cancer 2016;138(6):1312–27. DOI: 10.1002/ijc.29618. PMID: 26032913.
12. Архангельская П.А., Бахидзе Е.В., Берлев И.В. и др. МикроРНК, ВПЧинфекция и цервикальный канцерогенез: молекулярные аспекты и перспективы клинического использования. Сибирский онкологический журнал 2016;15(4):88–97. [Arkhangelskaya P.A., Bakhidze E.V., Berlev I.V. et al. MicroRNA, HPV and cervical carcinogenesis: molecular aspects and prospects of clinical application. Sibirskiy onkologichesliy zhurnal = Siberian Journal of Oncology 2016;15(4):88–97. (In Russ.)].
13. Tian Q., Li Y., Wang F. et al. MicroRNA detection in cervical exfoliated cells as a triage for human papillomavirus-positive women. J Natl Cancer Inst 2014;106(9). DOI: 10.1093/jnci/dju241. PMID: 25190727.
14. Lithwick-Yanai G., Dromi N., Shtabsky A. et al. Multicentre validation of a microRNAbased assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears. J Clin Pathol 2017;70(6):500–7. DOI: 10.1136/jclinpath-2016-204089. PMID: 27798083.
15. Колесников Н.Н., Титов С.Е., Веряскина Ю.А. и др. Повышение точности и информативности тонкоигольной аспирационной пункционной биопсии опухолей молочной железы путем анализа микроРНК в материале цитологического мазка. Успехи молекулярной онкологии 2016;3(3):44–52. [Kolesnikov N.N., Titov S.E., Veryaskina Y.A. et al. Improvement of accuracy and diagnostic significance of breast tumor fine-needle aspiration biopsy by miRNA analysis of material isolated from cytological smears. Uspekhi molekulyarnoy onkologii = Advances in molecular oncology 2016;3(1):44–52. (In Russ.)].
16. Lin W., Feng M., Chen G. et al. Characterization of the microRNA profile in early-stage cervical squamous cell carcinoma by next-generation sequencing. Oncol Rep 2017;37(3):1477–86. DOI: 10.3892/or.2017.5372. PMID: 28098890.
17. Liang S., Tian T., Liu X. et al. Microarray analysis revealed markedly differential miRNA expression profiles in cervical intraepithelial neoplasias and invasive squamous cell carcinoma. Future oncol 2014;10(13):2023–32.
18. Chen J., Zheng Y., Qin L. et al. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC plant biology 2016;16:80. DOI: 10.2217/fon.14.38. PMID: 24559408.
19. He X.P., Shao Y., Li X.L. et al. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J 2012;279(22): 4201–12. DOI: 10.1111/febs.12013. PMID: 23013439.
20. Wilting S.M., Snijders P.J., Verlaat W. et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 2013; 32(1):106–16. DOI: 10.1038/onc.2012.20. PMID: 22330141.
21. Lajer C.B., Garnaes E., Friis-Hansen L. et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br J Cancer 2012;106(9):1526–34. DOI: 10.1038/bjc.2012.109. PMID: 22472886.
22. Witten D., Tibshirani R., Gu S.G. et al. Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol 2010;8:58. DOI: 10.1186/1741-7007-8-58. PMID: 20459774.
23. Pereira P.M., Marques J.P., Soares A.R. et al. MicroRNA expression variability in human cervical tissues. PloS One 2010;5(7):e11780. DOI: 10.1371/journal.pone.0011780. PMID: 20668671.
24. Piao J., You K., Guo Y. et al. Substrate stiffness affects epithelial-mesenchymal transition of cervical cancer cells through miR-106b and its target protein DAB2. Int J Oncol 2017. DOI: 10.3892/ ijo.2017.3978. PMID: 28498390.
25. Yang Y., Xie Y.J., Xu Q. et al. Down-regulation of miR-1246 in cervical cancer tissues and its clinical significance. Gynecol Oncol 2015;138(3):683–8. DOI: 10.1016/j.ygyno.2015.06.015. PMID: 26074491.
26. Chen J., Yao D., Zhao S. et al. MiR-1246 promotes SiHa cervical cancer cell proliferation, invasion, and migration through suppression of its target gene thrombospondin 2. Arch Gynecol Obstet 2014;290(4):725–32. DOI: 10.1007/s00404-014-3260-2. PMID: 24806621.
27. Ribeiro J., Marinho-Dias J., Monteiro P. et al. miR-34a and miR-125b expression in HPV infection and cervical cancer development. Biomed Res Int 2015;2015:304584. DOI: 10.1155/2015/304584. PMID: 26180794.
28. Cui F., Li X., Zhu X. et al. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol Biochem 2012;30(5):1310–8. DOI: 10.1159/000343320. PMID: 23160634.
29. Nuovo G.J., Wu X., Volinia S. et al. Strong inverse correlation between microRNA-125b and human papillomavirus DNA in productive infection. Diagn Mol Pathol 2010;19(3):135–43. DOI: 10.1097/PDM.0b013e3181c4daaa. PMID: 20736742.
30. Wang C., Zhou B., Liu M., Gao R. MiR-126-5p restoration promotes cell apoptosis in cervical cancer by targeting Bcl2l2. Oncol Res 2017;25(4):463–70. DOI: 10.3727/096504016X14685034103879. PMID: 28438233.
31. Yang Y., Song K.L., Chang H., Chen L. Decreased expression of microRNA-126 is associated with poor prognosis in patients with cervical cancer. Diagnostic pathology 2014;9:220. DOI: 10.1186/s13000-014-0220-x. PMID: 25551621.
32. Yu Q., Liu S.L., Wang H. et al. MiR-126 Suppresses the proliferation of cervical cancer cells and alters cell sensitivity to the chemotherapeutic drug bleomycin. Asian Pacific journal of cancer prevention: Asian Pac J Cancer Prev 2014;14(11):6569–72. PMID: 24377569.
33. Azizmohammadi S., Safari A., Azizmohammadi S. et al. Molecular identification of miR-145 and miR-9 expression level as prognostic biomarkers for early-stage cervical cancer detection. QJM: monthly journal of the Association of Physicians 2017;110(1):11–5. DOI: 10.1093/qjmed/hcw101. PMID: 27345415.
34. Ye C., Sun N.X., Ma Y. et al. MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells. FEBS letters 2015;589(6):702–9. DOI: 10.1016/j.febslet.2015.01.037. PMID: 25666710.
35. Greco D., Kivi N., Qian K. et al. Human papillomavirus 16 E5 modulates the expression of host microRNAs. PloS One 2011;6(7):e21646. DOI: 10.1371/journal.pone.0021646. PMID: 21747943.
36. Wang X., Tang S., Le S.Y. et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PloS One 2008;3(7):e2557. DOI: 10.1371/journal.pone.0002557. PMID: 18596939.
37. Shen C., Yang H., Liu H. et al. Inhibitory effect and mechanisms of microRNA-146b-5p on the proliferation and metastatic potential of Caski human cervical cancer cells. Mol Med Rep 2015;11(5):3955–61. DOI: 10.3892/mmr.2015.3151. PMID: 25572123.
38. Paiva I., Gil da Costa R.M., Ribeiro J. et al. A role for microRNA-155 expression in microenvironment associated to HPV-induced carcinogenesis in K14-HPV16 transgenic mice. PloS One 2015;10(1):e0116868. DOI: 10.1371/journal.pone.0116868. PMID: 25625305.
39. Lao G., Liu P., Wu Q. et al. Mir-155 promotes cervical cancer cell proliferation through suppression of its target gene LKB1. Tumour Biol 2014;35(12):11933–8. DOI: 10.1007/s13277-014-2479-7. PMID: 25155037.
40. Park H., Lee M.J., Jeong J.Y. et al. Dysregulated microRNA expression in adenocarcinoma of the uterine cervix: clinical impact of miR-363-3p. Gynecol Oncol 2014;135(3):565–72. DOI: 10.1016/j.ygyno.2014.09.010. PMID: 25230213.
41. How C., Hui A.B., Alajez N.M. et al. MicroRNA-196b regulates the homeobox B7-vascular endothelial growth factor axis in cervical cancer. PloS One 2013;8(7):e67846. DOI: 10.1371/journal.pone.0067846. PMID: 23861821.
42. Zeng F., Xue M., Xiao T. et al. MiR-200b promotes the cell proliferation and metastasis of cervical cancer by inhibiting FOXG1. Biomed Pharmacother 2016;79:294–301. DOI: 10.1016/j.biopha.2016.02.033. PMID: 27044840.
43. Cheng Y.X., Zhang Q.F., Hong L. et al. MicroRNA-200b suppresses cell invasion and metastasis by inhibiting the epithelial-mesenchymal transition in cervical carcinoma. Mol Med Rep 2016;13(4):3155–60. DOI: 10.3892/mmr.2016.4911. PMID: 26935156.
44. Mao L., Zhang Y., Mo W. et al. BANF1 is downregulated by IRF1-regulated microRNA-203 in cervical cancer. PloS One 2015;10(2):e0117035. DOI: 10.1371/journal.pone.0117035. PMID: 25658920.
45. Zhao S., Yao D.S., Chen J.Y. et al. Aberrant expression of miR-20a and miR-203 in cervical cancer. Asian Pac J Cancer Prev 2013;14(4):2289–93. PMID: 23725129.
46. Zhao S., Yao D., Chen J. et al. MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PloS one 2015;10(3):e0120905. PMID: 23725129.
47. Song L., Liu S., Zhang L. et al. MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1alpha feedback loop and the Akt-mTOR signaling pathway. Tumour Biol 2016;37(9):12161–8. DOI: 10.1007/s13277-016-5073-3. PMID: 27220494.
48. Peralta-Zaragoza O., Deas J., Meneses-Acosta A. et al. Relevance of miR-21 in regulation of tumor suppressor gene PTEN in human cervical cancer cells. BMC Cancer 2016;16:215. DOI: 10.1186/s12885-016-2231-3. PMID: 26975392.
49. Zheng W., Liu Z., Zhang W. et al. MiR-31 functions as an oncogene in cervical cancer. Arch Gynecol Obstet 2015;292(5):1083–9. DOI: 10.1007/s00404-015-3713-2. PMID: 25894339.
50. Geng D., Song X., Ning F. et al. MiR-34a inhibits viability and invasion of human papillomavirus-positive cervical cancer cells by targeting E2F3 and regulating survivin. Int J Gynecol Cancer 2015;25(4):707–13. DOI: 0.1097/IGC.0000000000000399. PMID: 25675046.
51. Shen Y., Zhou J., Li Y. et al. miR-375 mediated acquired chemo-resistance in cervical cancer by facilitating EMT. PloS One 2014;9(10):e109299. DOI: 10.1371/journal.pone.0109299. PMID: 25330011.
52. Bierkens M., Krijgsman O., Wilting S.M. et al. Focal aberrations indicate EYA2 and hsa-miR-375 as oncogene and tumor suppressor in cervical carcinogenesis. Genes Chromosomes Cancer 2013;52(1):56–68. DOI: 10.1002/gcc.22006. PMID: 22987659.
53. Wang L., Chang L., Li Z. et al. miR-99a and -99b inhibit cervical cancer cell proliferation and invasion by targeting mTOR signaling pathway. Med Oncol 2014;31(5):934. DOI: 10.1007/s12032-014-0934-3. PMID: 24668416.
54. Mestdagh P., Van Vlierberghe P., De Weer A. et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 2009;10(6):R64. DOI: 10.1186/gb-2009-10-6-r64. PMID: 19531210.
Review
For citations:
Arkhangelskaya P.A., Samsonov R.B., Shtam T.A., Knyazeva M.S., Ivanov M.K., Titov S.E., Kolesnikov N.N., Bakhidze E.V., Berlev I.V., Mikhetko A.А., Vorobyev S.L., Malek A.V. EVALUATION OF EXPRESSION OF 4 MIRNAS IN CYTOLOGICAL SAMPLES AS AN ADDITIONAL METHOD OF CERVICAL CANCER DIAGNOSIS. Tumors of female reproductive system. 2017;13(3):63-72. (In Russ.) https://doi.org/10.17650/1994-4098-2017-13-3-63-72