Preview

Опухоли женской репродуктивной системы

Расширенный поиск

Биологическое обоснование персонализации лечения рака молочной железы. Клиническое значение определения новых маркеров рака молочной железы

https://doi.org/10.17650/1994-4098-2019-15-2-10-29

Полный текст:

Аннотация

Рак молочной железы (РМЖ), являясь наиболее часто встречающимся онкологическим заболеванием, остается актуальной проблемой как для клиницистов, так и для фундаментальных исследователей. Положительное влияние в лечении заболевания оказало внедрение программ маммографического скрининга, адъювантной и неоадъювантной системной терапии. Большую актуальность набирает изучение биологических маркеров РМЖ, альтернативных стандартным маркерам, широко вошедшим в рутинную клиническую практику. Целый ряд показателей, таких как р53, CK5/6, SMA, p63, PHH3, E-кадгерин, EGFR, FOXA1, рецепторы андрогенов, TILs и др., в многочисленных исследованиях демонстрируют свою предиктивную и/или прогностическую значимость. Результаты исследований свидетельствуют о том, что изучение новых биологических маркеров при РМЖ требует дальнейшего подробного анализа.

Многочисленные исследования позволили определить роль биомаркеров в выборе тактики лечения РМЖ, отметить прогностическое значение биомаркеров, связанных с пролиферативной активностью опухоли, в частности, циклина D1, G1-циклинзависимых киназ (CDK) 4 и 6, циклинзависимых киназ 8/19, указать важность фосфогистона H3, который является маркером пролиферации и может быть использован для определения степени злокачественности опухоли, изучить также прогностическое значение рецепторов андрогена и других биомаркеров. Были проведены исследования по изучению экспрессии биомаркеров и влияния ее на общую и безрецидивную выживаемость.

Об авторе

Р. М. Палтуев
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова» Минздрава России
Россия

Руслан Маликович Палтуев

197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68



Список литературы

1. Giordano S.B., Gradishar W. Breast cancer: updates and advances in 2016. Curr Opin Obstet Gynecol 2017;29(1):12–7. DOI: 10.1097/GCO.0000000000000343.

2. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;365(9472):1687–17. DOI: 10.1016/S0140-6736(05)66544-0.

3. Bollet M.A., Sigal-Zafrani B., Mazeau V. et al. Age remains the first prognostic factor for loco-regional breast cancer recurrence in young (<40 years) women treated with breast conserving surgery first. Radiother Oncol 2007;82(3):272–80. DOI: 10.1016/j.radonc.2007.01.001.

4. Schwartz A.M., Henson D.E., Chen D., Rajamarthandan S. Histologic grade remains a prognostic factor for breast cancer regardless of the number of positive lymph nodes and tumor size: a study of 161 708 cases of breast cancer from the SEER Program. Arch Pathol Lab Med 2014;138(8):1048–52. DOI: 10.5858/arpa.2013-0435-OA.

5. Schaapveld M., de Vries E.G., van der Graaf W.T. et al. The prognostic effect of the number of histologically examined axillary lymph nodes in breast cancer: stage migration or age association? Ann Surg Oncol 2006;13(4):465–74. DOI: 10.1245/ASO.2006.02.020.

6. Beith J., Burslem K., Bell R. Hormone receptor positive, HER2 negative metastatic breast cancer: A systematic review of the current treatment landscape. Asia Pac J Clin Oncol 2016;(12 Suppl 1):3–18. DOI: 10.1111/ajco.12491.

7. Pegram M.D. Treating the HER2 pathway in early and advanced breast cancer. Hematol Oncol Clin North Am 2013;27(4):751–65. DOI: 10.1016/j.hoc.2013.05.007.

8. Perou C.M., Sørlie T,, Eisen M,B. et al. Molecular portraits of human breast tumours. Nature 2000;406(6797):747–52. DOI: 10.1038/35021093.

9. Albain K.S., Barlow W.E., Shak S. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a ran- domised trial. Lancet Oncol 2010;1(11):55–65. DOI: 10.1016/S1470-2045(09)70314-6.

10. Blows F.M. Driver K.E., Schmidt M.K. et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 2010;7(5):1000279. DOI: 10.1371/journal.pmed.1000279.

11. Cuzick J., Dowsett M., Pineda S. et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 2011;29(32):4273–8. DOI: 10.1200/JCO.2010.31.2835.

12. Lee S.K., Bae S.Y., Lee J.H. et al. Distinguishing low-risk luminal a breast cancer subtypes with Ki-67 and p53 is more predictive of long-term survival. PloS One 2015;10(8):0124658. DOI: 10.1371/journal.pone.0124658.

13. Abdelrahman A.E., Rashed H.E., Abdelgawad M. et al. Prognostic impact of EGFR and cytokeratin 5/6 immunohistochemical expression in triple-negative breast cancer. Ann Diagn Pathol 2017;(28):43–53. DOI: 10.1016/j.anndiagpath.2017.01.009.

14. Chang H.Y. Nuyten D.S., Sneddo J.B. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 2005;102(10):3738–43. DOI: 10.1073/pnas.0409462102.

15. Di Franco S., Sala G., Todaro M. p63 role in breast cancer. Aging 2016;8(10):2256–7. DOI: 10.18632/aging.101042.

16. Hao Q., Cong D., Yujiao D. et al. Pooling analysis on prognostic value of PHH3 expression in cancer patients. Cancer Manag Res 2018;10:2279–88. DOI: 10.2147/CMAR.S167569.

17. Ionescu Popescu C., Giuşcă S.E., Liliac L. et al. E-cadherin expression in molecular types of breast carcinoma. Rom J Morphol Embryol 2013;54(2):267–73.

18. Masuda H., Zhang D., Bartholomeusz C. et al. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 2012;136(2):331–45. DOI: 10.1007/s10549-012-2289-9.

19. Bernardo G.M., Keri R.A. FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep 2012;32(2):113–30. DOI: 10.1042/BSR20110046.

20. Higgins M.J., Wolff A.C. The androgen receptor in breast cancer: learning from the past. Breast Cancer Res Treat 2010;124(3):619–21. DOI: 10.1007/s10549-010-0864-5.

21. Dieci M.V., Radosevic-Robin N., Fineberg S. et al. Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. Semin Cancer Biol 2018; 52(Pt 2):16–25. DOI: 10.1016/j.semcancer.2017.10.003.

22. Amur S., Becker R.L., Chakravarty A.G. et al. FDA-NIH Biomarker Working Group. BEST Res 2016.

23. Axelsson C.K., Mouridsen H.T., Zedeler K. Axillary dissection of level I and II lymph nodes is important in breast cancer classification. The Danish Breast Cancer Cooperative Group (DBCG). Eur J Cancer 1992;28(8–9):1415–8. DOI: 10.1016/0959-8049(92)90534-9.

24. Harris L.N., Ismaila N., McShane L.M. et al. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2016;34(10):1134–50. DOI: 10.1200/JCO.2015.65.2289.

25. Sherr C.J. Mammalian G1 cyclins. Cell 1993;73(6):1059–65. DOI: 10.1016/0092-8674(93)90636-5.

26. Rudas M., Lehnert M., Huynh A. et al. Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin Cancer Res 2008;14(6):1767–74. DOI: 10.1158/1078-0432.CCR-07-4122.

27. Umekita Y., Ohi Y., Sagara Y., Yoshida H. Overexpression of cyclin D1 predicts for poor prognosis in estrogen receptor-negative breast cancer patients. Int J Cancer 2002;98(3):415–8. DOI: 10.1002/ijc.10151.

28. Lange C.A., Yee D. Killing the second messenger: targeting loss of cell cycle control in endocrine-resistant breast cancer. Endocr Relat Cancer 2011;18(4):19–24. DOI: 10.1530/ERC-11-0112.

29. Finn R.S., Aleshin A., Slamon D.J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res 2016;18(1):17. DOI: 10.1186/s13058-015-0661-5.

30. Barnes D.M., Gillett C.E. Cyclin D1 in breast cancer. Breast Cancer Res Treat 1998;52(1–3):1–15.

31. Peurala E., Koivunen P., Haapasaari K.M. et al. The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer. Breast Cancer Res 2013;15(1):5. DOI: 10.1186/bcr3376.

32. Feng Y., Sun B., Li X., Zhang L. et al. Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 2007;103(3):319–29. DOI: 10.1007/s10549-006-9385-7.

33. Westerling T., Kuuluvainen E., Mäkelä T.P. CDK8 is essential for preimplantation mouse development. Mol Cell Biol 2007;27(17):6177–82. DOI: 10.1128/MCB.01302-06.

34. Zhao X., Feng D., Wang Q. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J Clin Invest 2012;122(7):2417–27. DOI: 10.1172/JCI61462.

35. Galbraith M.D., Donner A.J., Espinosa J.M. CDK8: a positive regulator of transcription. Transcription 2010;1(1):4–12. DOI: 10.4161/trns.1.1.12373.

36. Porter D.C., Farmaki E., Altilia S. Cyclindependent kinase 8 mediates chemothera- py-induced tumor-promoting paracrine activities. Proc Natl Acad of Sci USA 2012;109(34):13799–804. DOI: 10.1073/pnas.1206906109.

37. Donner A.J., Ebmeier C.C., Taatjes D.J., Espinosa J.M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 2010;17(2):194–201. DOI: 10.1038/nsmb.1752.

38. Broude E.V., Győrffy B., Chumanevich A.A. et al. Expression of CDK8 and CDK8-interacting Genes as Potential Biomarkers in Breast Cancer. Curr Cancer Drug Targets 2015;15(8):739–49. DOI: 10.2174/156800961508151001105814.

39. Lee L.H., Yang H., Bigras G. Current breast cancer proliferative markers correlate variably based on decoupled duration of cell cycle phases. Sci Rep 2014;4:5122. DOI: 10.1038/srep05122.

40. Casper D.J., Ross K.I., Messina J.L. et al. Use of anti-phosphohistone H3 immunohistochemistry to determine mitotic rate in thin melanoma. Am J Dermatopathol 2010;32(7):650–4. DOI: 10.1097/DAD.0b013e3181cf7cc1.

41. Tetzlaff M.T., Curry J.L., Ivan D. Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma. Mod Pathol 2013;26(9):1153–60. DOI: 10.1038/modpathol.2013.59.

42. Cui X., Harada S, Shen D. et al. The Utility of Phosphohistone H3 in Breast Cancer Grading. Appl Immunohistochem Mol Morphol 2015;23(10):689–95. DOI: 10.1097/PAI.0000000000000137.

43. Gerring Z., Pearson J.F., Morrin H.R. et al. Phosphohistone H3 outperforms Ki-67 as a marker of outcome for breast cancer patients. Histopathology 2015;67(4):538–47. DOI: 10.1111/his.12678.

44. Kim J.-Y., Jeong H.S., Chung T. et al. The value of phosphohistone H3 as a proliferation marker for evaluating invasive breast cancers: A comparative study with Ki-67. Oncotarget 2017;8(39):65064–76. DOI: 10.18632/oncotarget.17775.

45. Jeselsohn R., Yelensky R., Buchwalter G. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 2014;20(7): 1757–67. DOI: 10.1158/1078-0432.CCR-13-2332.

46. Jeselsohn R., Buchwalter G., de Angelis C. et al. ESR1 mutations – a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol 2015;12(10):573–83. DOI: 10.1038/nrclinonc.2015.117.

47. Chandarlapaty S., Chen D., He W. et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol 2016;2 102):1310–5. DOI: 10.1001/jamaoncol.2016.1279.

48. Fribbens C., O’Leary B., Kilburn L. et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol 2016;34(25):2961–8. DOI: 10.1200/JCO.2016.67.3061.

49. Clatot F., Perdrix A., Augusto L. et al. Kinetics, prognostic and predictive values of ESR1 circulating mutations in metastatic breast cancer patients progressing on aromatase inhibitor. Oncotarget 2016;7(46):74448–59. DOI: 10.18632/oncotarget.12950.

50. Williams N., Harris L.N. The renaissance of endocrine therapy in breast cancer. Curr Opin Оbstet Gynecol 2014;26(1):41–7. DOI: 10.1097/GCO.0000000000000039.

51. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490(7418):61–70. DOI: 10.1038/nature11412.

52. Takeshita T., Yamamoto Y., Yamamoto-Ibusuki M. et al. Droplet digital polymerase chain reaction assay for screening of ESR1 mutations in 325 breast cancer specimens. Transl Res 2015;166(6):540– 53. DOI: 10.1016/j.trsl.2015.09.003.

53. Wang P., Bahreini A., Gyanchandani R. et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin Cancer Res 2016;22(5):1130–37. DOI: 10.1158/1078-0432.CCR-15-1534.

54. Moe R.E., Anderson B.O. Androgens and androgen receptors: A clinically neglected sector in breast cancer biology. J Surg Oncol 2007;95(6):437–9. DOI: 10.1002/jso.20722.

55. Park S., Koo J., Park H.S. et al. Expression of androgen receptors in primary breast cancer. Ann Oncol 2010;21(3):488–92. DOI: 10.1093/annonc/mdp510.

56. Hickey T.E., Robinson J.L., Carroll J.S., Tilley W.D. Minireview: The androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol 2012;26(8):1252–67. DOI: 10.1210/me.2012-1107.

57. Peters K.M., Edwards S.L., Nair S.S. Androgen receptor expression predicts breast cancer survival: the role of genetic and epigenetic events. BMC Cancer 2012;12(1):132. DOI: 10.1186/1471-2407-12-132.

58. Secreto G., Zumoff B. Role of androgen excess in the development of estrogen receptor-positive and estrogen receptor-negative breast cancer. Anticancer Res 2012;32(8):3223–8.

59. Gucalp A., Traina T.A. Triple-negative breast cancer: role of the androgen receptor. Cancer J 2010;16(1):62–5. DOI: 10.1097/PPO.0b013e3181ce4ae1.

60. Ni M., Chen Y., Lim E. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 2011;20(1):119–31. DOI: 10.1016/j.ccr.2011.05.026.

61. Park S., Koo JS, Kim M.S. et al. Androgen receptor expression is significantly associated with better outcomes in estrogen receptor-positive breast cancers. Ann Oncol 2011;22(8):1755–62. DOI: 10.1093/annonc/mdq678.

62. Sutton L.M., Cao D., Sarode V. et al. Decreased androgen receptor expression is associated with distant metastases in patients with androgen receptor–expressing triple-negative breast carcinoma Am J Clin Pathol 2012;138(4):511–6. DOI: 10.1309/AJCP8AVF8FDPTZLH.

63. Cascione L., Gasparini P., Lovat F. et al. Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer. PLoS One 2013;8(2):55910. DOI: 10.1371/journal.pone.0055910.

64. Guler G., Himmetoglu C., Jimenez R.E. Aberrant expression of DNA damage response proteins is associated with breast cancer subtype and clinical features. Breast Cancer Res Treat 2011;129(2):421–32. DOI: 10.1007/s10549-010-1248-6.

65. Foulkes W.D., Smith I.E., Reis-Filho J.S. Triple-Negative Breast Cancer. New Eng J Med 2010;363(20):1938–48. DOI: 10.1056/NEJMra1001389.

66. Hudis C.A., Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist 2011;(Suppl 1):1–11. DOI: 10.1634/theoncologist.2011-S1-01.

67. McNamara K.M., Yoda T., Miki Y. et al. Androgenic pathway in triple negative invasive ductal tumors: its correlation with tumor cell proliferation. Cancer Sci 2013;104(5):639–46. DOI: 10.1111/cas.12121.

68. McNamara K.M., Yoda T., Takagi K. et al. Androgen receptor in triple negative breast cancer. J Steroid Biochem Mol Biol 2013;133:66–76. DOI: 10.1016/j.jsbmb.2012.08.007.

69. McGhan L.J., McCullough A.E., Protheroe C.A. et al. Androgen receptor-positive triple negative breast cancer: a unique breast cancer subtype. Ann Surg Oncol 2014;21(2):361–7. DOI: 10.1245/s10434-013-3260-7.

70. Cheang M.C., Voduc D., Bajdik C. et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008;14(5):1368–76. DOI: 10.1158/1078-0432.CCR-07-1658.

71. Thike A.A., Yong-Zheng Chong L., Cheok P.Y. et al. Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer. Mod Pathol 2014;27(3):352–60. DOI: 10.1038/modpathol.2013.145.

72. Gasparini P., Fassan M., Cascione L. et al. Androgen receptor status is a prognostic marker in non-basal triple negative breast cancers and determines novel therapeutic options. PloS One 2014;9(2):88525. DOI: 10.1371/journal.pone.0088525.

73. Hisamatsu Y., Tokunaga E., Yamashita N. et al. Impact of FOXA1 expression on the prognosis of patients with hormone receptor-positive breast cancer. Ann Surg Oncol 2012;19(4):1145–52. DOI: 10.1245/s10434-011-2094-4.

74. Ijichi N., Shigekawa T., Ikeda K. et al. Association of double-positive FOXA1 and FOXP1 immunoreactivities with favorable prognosis of tamoxifen-treated breast cancer patients. Horm Cancer 2012;3(4):147– 59. DOI: 10.1007/s12672-012-0111-0.

75. Kawase M., Toyama T., Takahashi S. et al. FOXA1 expression after neoadjuvant chemotherapy is a prognostic marker in estrogen receptor-positive breast cancer. Breast Cancer 2015;22(3):308–16. DOI: 10.1007/s12282-013-0482-2.

76. Liu N., Niu Y., Wang S.L. et al. Diagnostic and prognostic significance of FOXA1 expression in molecular subtypes of breast invasive ductal carcinomas. Zhonghua Yi Xue Za Zhi 2010;90(20):1403–7.

77. Costa R.H., Grayson D.R., Darnell J.E. Multiple hepatocyte-enriched nuclear factors function in the regulation of trans- thyretin and alpha 1-antitrypsin genes. Mol Cell Biol 1989;9(4):1415–25. DOI: 10.1128/mcb.9.4.1415.

78. Wolf I., Bose S., Williamson E.A. et al. FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int J Cancer 2007;120(5):1013–22. DOI: 10.1002/ijc.22389.

79. Carroll J.S., Brown M. Estrogen receptor target gene: an evolving concept. Mol Endocrinol 2006;20(8):1707–14. DOI: 10.1210/me.2005-0334.

80. Beck S., Sommer P, dos Santos Silva E. et al. Hepatocyte nuclear factor 3 (winged helix domain) activates trefoil factor gene TFF1 through a binding motif adjacent to the TATAA box. DNA Cell Biol 1999;18(2):157–64. DOI: 10.1089/104454999315547.

81. Bernardo G.M., Bebek G., Ginther C.L. et al. FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene 2013;32(5):554–63. DOI: 10.1038/onc.2012.62.

82. Nakshatri H., Badve S. FOXA1 as a therapeutic target for breast cancer. Expert Opin Ther Targets 2007;11(4):507–14. DOI: 10.1517/14728222.11.4.507.

83. Hurtado A., Holmes K.A., Ross-Innes C.S. et al. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 2011;43(1):27–33. DOI: 10.1038/ng.730.

84. Goldhirsch A., Ingle J.N., Gelber R.D. et al. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009;20(8):1319–29. DOI: 10.1093/annonc/mdp322.

85. Kim C., Paik S. Gene-expression-based prognostic assays for breast cancer. Nat Rev Clin Oncol 2010;7(6):340–7. DOI: 10.1038/nrclinonc.2010.61.

86. Badve S., Turbin D., Thorat M.A. et al. FOXA1 expression in breast cancer – correlation with luminal subtype A and survival. Clin Cancer Res 2007;13(15 Pt 1): 4415–21. DOI: 10.1158/1078-0432.CCR-07-0122.

87. Albergaria A., Paredes J., Sousa B. et al. Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res 2009;3(11):40. DOI: 10.1186/bcr2327.

88. Mehta R.J., Jain R.K., Leung S. et al. FOXA1 is an independent prognostic marker for ER-positive breast cancer. Breast Cancer Res Treat 2012;131(3):881– 90. DOI: 10.1007/s10549-011-1482-6.

89. Yerushalmi R., Woods R., Ravdin P.M. Ki-67 in breast cancer: prognostic and predictive potential. Lancet Oncol 2010;11(2):174–83. DOI: 10.1016/S1470-2045(09)70262-1.

90. Xu C., Wei Q., Guo J. et al. FOXA1 expression significantly predict response to chemotherapy in estrogen receptor-positive breast cancer patients. Ann Surg Oncol 2015;22(6):2034–9. DOI: 10.1245/s10434-014-4313-2.

91. Shou J., Lai Y., Xu J., Huang J. Prognostic value of FOXA1 in breast cancer: A systematic review and meta-analysis. Breast 2016;27:35–43. DOI: 10.1016/j.breast.2016.02.009.

92. Guiu S., Mollevi C., Charon-Barra C. et al. Prognostic value of androgen receptor and FOXA1 co-expression in non-metastatic triple negative breast cancer and correlation with other biomarkers. Br J Cancer 2018;119(1):76–9. DOI: 10.1038/s41416-018-0142-6.

93. Malkin D., Li F.P., Strong L.C. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250(4985):1233–8. DOI: 10.1126/science.1978757.

94. Sørlie T., Perou C.M., Tibshirani R. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98(19):10869–74. DOI: 10.1073/pnas.191367098.

95. Phillips K.A., Nichol K., Ozcelik H. et al. Frequency of p53 mutations in breast carcinomas from Ashkenazi Jewish carriers of BRCA1 mutations. J Natl Cancer Ins 1999;91(5):469–73. DOI: 10.1093/jnci/91.5.469.

96. Smith P.D., Crossland S., Parker G. et al. Novel p53 mutants selected in BRCA-associated tumours which dissociate transformation suppression from other wild-type p53 functions. Oncogene 1999;18(15):2451–9. DOI: 10.1038/sj.onc.1202565

97. Cremoux P., Salomon A.V., Liva S. et al. p53 mutation as a genetic trait of typical medullary breast carcinoma. J Natl Cancer Inst 1999;91(7):641–3. DOI: 10.1093/jnci/91.7.641.

98. Moll U.M., Riou G., Levine A.J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 1992;89(15):7262–6. DOI: 10.1073/pnas.89.15.7262.

99. Stankovic T., Kidd A.M., Sutcliffe A. et al. ATM mutations and phenotypes in ataxiatelangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 1998;62(2):334–45. DOI: 10.1086/301706.

100. Angèle S., Treilleux I, Tanière P. et al. Ab-normal expression of the ATM and TP53 genes in sporadic breast carcinomas. Clin Cancer Res 2000;6(9):3536–44.

101. Raman V., Martensen S.A., Reisman D. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000;405(6789):974–8. DOI: 10.1038/35016125.

102. Mazars R., Spinardi L., BenCheikh M. p53 mutations occur in aggressive breast cancer. Cancer Res 1992;52(14):3918–23.

103. Pharoah P.D., Day N.E., Caldas C. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 1999;80(12):1968–73. DOI: 10.1038/sj.bjc.6690628.

104. Alsner J., Yilmaz M, Guldberg P. et al. Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients. Clin Cancer Res 2000;6(10):3923– 31. DOI: 10.1186/bcr109.

105. Aas T., Børresen A.L., Geisler S. et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 1996;7(2):811–4.

106. Geisler S., Lønning P.E., Aas T. et al. Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 2001;61(6):2505–12.

107. Kandioler-Eckersberger D., Ludwig C., Rudas M. et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res 2000;6(1):50–6.

108. Dumay A., Feugeas J.P., Wittmer E. et al. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 2013;132(5):1227–31. DOI: 10.1002/ijc.27767.

109. Maeda T., Nakanishi Y., Hirotani Y. et al. Immunohistochemical co-expression status of cytokeratin 5/6, androgen receptor, and p53 as prognostic factors of adjuvant chemotherapy for triple negative breast cancer. Med Mol Morphol 2016;49(1):11– 21. DOI: 10.1007/s00795-015-0109-0.

110. Peng L., Xu T., Long T., Zuo H. Аssociation between BRCA status and p53 status in breast cancer: a meta-analysis. Med Sci Monit 2016;22:1939–45. DOI: 10.12659/msm.896260.

111. Taylor-Papadimitriou J., Stampfer M., Bartek J. et al. Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci 1989;94(Pt 3):403–13.

112. Abd El-Rehim D.M., Pinder SE, Paish C.E. et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 2004;203(2):661–71. DOI: 10.1002/path.1559.

113. Kayahan M., İdiz U.O., Gucin Z. et al. Cinical significance of androgen receptor, CK-5/6, Ki-67 and molecular subtypes in breast cancer. J Breast Health 2014;10(4):201–8. DOI: 10.5152/tjbh.2014.1777.

114. Yue Y., Astvatsaturyan K., Cui X. et al. Stratification of Prognosis of Triple-Negative Breast Cancer Patients Using Combinatorial Biomarkers. PloS One 2016;11(3):0149661. DOI: 10.1371/journal.pone.0149661.

115. Adamo B., Ricciardi G.R., Ieni A. et al. The prognostic significance of combined androgen receptor, E-Cadherin, Ki-67 and CK5/6 expression in patients with triple negative breast cancer. Oncotarget 2017;44(8):76974–86. DOI: 10.18632/oncotarget.20293.

116. Fox S.B., Smith K., Hollyer J. et al. The epidermal growth factor receptor as a prognostic marker: results of 370 patients and review of 3009 patients. Breast Cancer Res Treat 1994;29(1):41–9.

117. Rakha E.A., El-Sayed M.E., Green A.R. et al. Prognostic markers in triple-negative breast cancer. Cancer 2007;109(1):25–32. DOI: 10.1002/cncr.22381.

118. Salomon D.S., Brandt R., Ciardiello F., Normanno N. Epidermal growth factorrelated peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19(3):183–232.

119. Burness M.L., Grushko T.A., Olopade O.I. Epidermal growth factor receptor in triple- negative and basal-like breast cancer: promising clinical target or only a marker? Cancer J 2010;16(1):23–32. DOI: 10.1097/PPO.0b013e3181d24fc1.

120. Gonzalez-Conchas G.A., Rodriguez-Romo L., Hernandez-Barajas D. Epidermal growth factor receptor overexpression and outcomes in early breast cancer: A systematic review and a meta-analysis. Cancer Treat Rev 2018;(62):1–8. DOI: 10.1016/j.ctrv.2017.10.008.

121. Bloom H.J., Richardson W.W., Field J.R. et al. Host resistance and survival in carcinoma of breast: a study of 104 cases of medullary carcinoma in a series of 1,411 cases of breast cancer followed for 20 years. Br Med J 1970;3(5716):181–8. DOI: 10.1136/bmj.3.5716.181.

122. Loi S., Sirtaine N., Piette F. et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III random- ized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013;31(7):860–7. DOI: 10.1200/JCO.2011.41.0902.

123. Dieci M.V., Criscitiello C., Goubar A. et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol 2014;25(3):611–8. DOI: 10.1093/annonc/mdt556.

124. Denkert C., von Minckwitz G., Brase J.C. et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015;33(9):983–91. DOI: 10.1200/JCO.2014.58.1967.

125. Salgado R., Denkert C., Demaria S. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015;26(2):259–71. DOI: 10.1093/annonc/mdu450.

126. Lakhani S.R., Jacquemier J., Sloane J.P. et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst 1998;90(15):1138–45. DOI: 10.1093/jnci/90.15.1138.

127. Telli M.L., Jensen K.C., Vinayak S. et al. Phase II Study of gemcitabine, carboplatin, and iniparib as neoadjuvant therapy for triple-negative and BRCA1/2 mutationassociated breast cancer with assessment of a tumor-based measure of genomic instability: PrECOG 0105. J Clin Oncol 2015;33(17):1895–901. DOI: 10.1200/JCO.2014.57.0085.

128. Quezada S.A., Peggs K.S., Simpson T.R., Allison J.P. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 2011;241(1):104–18. DOI: 10.1111/j.1600-065X.2011.01007.x.

129. Jiang X., Shapiro D.J. The immune system and inflammation in breast cancer. Mol Cell Endocrinol 2014;382(1):673–82. DOI: 10.1016/j.mce.2013.06.003.

130. Tan W., Zhang W., Strasner A. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signaling. Nature 2011;470(7335):548–53. DOI: 10.1038/nature09707.

131. Pickup M.W., Mouw J.K., Weaver V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 2014;15(12):1243–53. DOI: 10.15252/embr.201439246.

132. Thomas D.A., Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005;8(5):369–80. DOI: 10.1016/j.ccr.2005.10.012.

133. Groh V., Wu J., Yee C., Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002;419(6908):734–8. DOI: 10.1038/nature01112.

134. Janakiram M., Chinai J.M., Fineberg S. Expression, Clinical Significance, and Receptor Identification of the Newest B7 Family Member HHLA2 Protein. Clin Cancer Res 2015;21(10):2359–66. DOI: 10.1158/1078-0432.CCR-14-1495.

135. Sun S., Fei X., Mao Y. et al. PD-1 + immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother 2014;63(4):395–406. DOI: 10.1007/s00262-014-1519-x.

136. Loi S., Michiels S., Salgado R. et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 2014;25(8)61544–50. DOI: 10.1093/annonc/mdu112.

137. Perez E.A., Ballman K.V., Anderson K. et al. Abstract S1-06: Stromal tumor-infiltrating lymphocytes (S-TILs): In the alliance N9831 trial S-TILs are associated with chemotherapy benefit but not associated with trastuzumab benefit. Cancer Res 2015;75(suppl 9):S1-06-S1-06. DOI: 10.1158/1538-7445.SABCS14-S1-06.

138. Dieci M.V., Mathieu M.C., Guarneri V. et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol 2015;26(8):1698–704. DOI: 10.1093/annonc/mdv239.

139. Smith I.C., Heys S.D., Hutcheon A.W. et al. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol 2002;20(6):1456–66. DOI: 10.1200/JCO.2002.20.6.1456.

140. Cortazar P., Geyer C.E.J. Pathological complete response in neoadjuvant treatment of breast cancer. Ann Surg Oncol 2015;22(5):1441–6. DOI: 10.1245/s10434-015-4404-8.

141. Prowell T.M., Pazdur R. Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 2012;366(26):2438–41. DOI: 10.1056/NEJMp1205737.

142. Symmans W.F., Peintinger F., Hatzis C. et al. Measurement of residual breast cancer burden to predict survival after neoad-juvant chemotherapy. J Clin Oncol 2007;25(28):4414–22. DOI: 10.1200/JCO.2007.10.6823.

143. Denkert C., Loibl S., Noske A. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadju- vant chemotherapy in breast cancer. J Clin Oncol 2010;28(1):105–13. DOI: 10.1200/JCO.2009.23.7370.

144. Mao Y., Qu Q., Zhang Y. et al. The value of tumor infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. PloS One 2014;9(12):115103. DOI: 10.1371/journal.pone.0115103.

145. Oda N., Shimazu K., Naoi Y. et al. Intra-tumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclo-phosphamide in breast cancer patients. Breast Cancer Res Treat 2012;136(1):107– 16. DOI: 10.1007/s10549-012-2245-8.

146. Seo A.N., Lee H.J., Kim E.J. et al. Tumour-infiltrating CD8 + lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer 2013;109(10):2705–13. DOI: 10.1038/bjc.2013.634.

147. Loi S., Michiels S., Salgado R. et al. Abstract S1-05: Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2 + BC). Cancer Res 2013;24 (Suppl 73):1–5. DOI: 10.1158/0008-5472.SABCS13-S1-05.

148. Salgado R., Denkert C., Campbell C. et al. Tumor-Infiltrating Lymphocytes and Associations With Pathological Complete Response and Event-Free Survival in HER2-Positive Early-Stage Breast Cancer Treated With Lapatinib and Trastuzumab: A Secondary Analysis of the NeoALTTO Trial. JAMA Oncol 2015;1(4):448–55. DOI: 10.1001/jamaoncol.2015.0830.

149. West N.R., Milne K., Truong P.T. et al. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Br Cancer Res 2011;13(6):126. DOI: 10.1186/bcr3072.

150. Chan M.S., Wang L., Felizola S.J. et al. Changes of tumor infiltrating lymphocyte subtypes before and after neoadjuvant endocrine therapy in estrogen receptor-positive breast cancer patients ‒ an immunohistochemical study of CD8 + and FOXP3 + using double immunostaining with correlation to the pathobiological response of the patients. Int J Biol Markers 2012;27(4):295‒304. DOI: 10.5301/JBM.2012.10439.


Для цитирования:


Палтуев Р.М. Биологическое обоснование персонализации лечения рака молочной железы. Клиническое значение определения новых маркеров рака молочной железы. Опухоли женской репродуктивной системы. 2019;15(2):10-29. https://doi.org/10.17650/1994-4098-2019-15-2-10-29

For citation:


Paltuev R.M. Biological rationale for a patient-specific approach in the treatment of breast cancer. Clinical value of novel biomarkers of breast cancer. Tumors of female reproductive system. 2019;15(2):10-29. (In Russ.) https://doi.org/10.17650/1994-4098-2019-15-2-10-29

Просмотров: 222


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)