Prognostic value of microRNA assessment in cervical epithelial cells of patients with mild dysplasia
https://doi.org/10.17650/1994-4098-2020-16-4-66-75
Abstract
Background. Currently, there are no reliable markers for the prognosis of the low-grade squamous intraepithelial lesion (LSIL) of the cervical epithelium. Scientific literature provides with inconsistent recommendations regarding the management of the young patients with a cytological diagnosis of LSIL. The progression of cervical dysplasia and the development of cervical cancer are associated with characteristic alterations of the microRNA expression profile.
Objective: to assess the prognostic value of microRNA in LSIL. Materials and methods. Samples (cytological smears) obtained from patients diagnosed with LSIL (n = 36), but with a different course of the disease over the next 6–12 months. Analysis of miRNA expression was carried out by the method of “two-tailed” reverse transcription and subsequent PCR.
Results. The expression level of miR-126, miR-21, miR-1246, miR-182 was statistically significantly different in the compared groups, but the predictive value of the analysis of individual molecules was low (AUC <0.65). Calculation of the concentration ratios of the “reciprocal” pairs of microRNAs made it possible to obtain a more effective prognostic marker. ROC analysis of such ratios (miR-126/miR-182, miR-21/miR-182, miR-1246/miR-182) yielded AUC values: 0.82–0.89, sensitivity: 0.71–0.92; specificity: 0.86.
Conclusions. Analysis of a panel of microRNA marker molecules in the material of the cervical epithelium and calculation of the concentration ratios of “reciprocal” pairs is a promising method for prognosis of LSIL course.
About the Authors
M. S. KnyazevaRussian Federation
68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758
4/9 office 16, Lugovaya St., Innovation center “Skolkovo”, Moscow 143026
Т. S. Prisyazhnaya
Russian Federation
47 Piskarevskiy Prospekt, Saint Petersburg 195067
L. M. Zabegina
Russian Federation
68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758
4/9 office 16, Lugovaya St., Innovation center “Skolkovo”, Moscow 143026
О. A. Smirnova
Russian Federation
68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758
A. A. Mikhetko
Russian Federation
47 Piskarevskiy Prospekt, Saint Petersburg 195067
I. V. Berlev
Russian Federation
68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758
47 Piskarevskiy Prospekt, Saint Petersburg 195067
A. V. Malek
Russian Federation
47 Piskarevskiy Prospekt, Saint Petersburg 195067
4/9 office 16, Lugovaya St., Innovation center “Skolkovo”, Moscow 143026
References
1. Malignant tumors in Russia in 2018 (incidence and mortality). Ed. by A.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow: P.A. Herzen Moscow Oncology Research Institute – a branch of the National Medical Research Radiological Center, Ministry of Health of Russia, 2019. 250 p. (In Russ.).
2. Cooper D.B., McCathran C.E. Cervical Dysplasia. StatPearls Publishing LLC, 2020.
3. Solomon D. The 2001 Bethesda System Terminology for Reporting Results of Cervical Cytology. JAMA 2002;287(16):2114.
4. Nayar R., Wilbur D.C. The Bethesda System for Reporting Cervical Cytology: A Historical Perspective. Acta Cytologica 2017;61(4–5):359–72.
5. Kurman R.J., Carcangiu M.L., Harrington C.S., Young R.H. WHO classification of tumours of female reproductive organs. Lyon: IARC Press, 2014.
6. Dobrokhotova Yu.E., Borovkova E.I. International algorithms used for the management of patients with cervical dysplasia. Ginekologiya = Gynecology 2018;20(5):27–32. (In Russ.)].
7. Flagg E.W., Torrone E.A., Weinstock H. Ecological Association of Human Papillomavirus Vaccination with Cervical Dysplasia Prevalence in the United States, 2007–2014. Am J Public Health 2016;106(12):2211–8.
8. World Health Organization. Comprehensive cervical cancer control: a guide to essential practice. 2nd edn. Copenhagen: World Health Organization, 2014.
9. Benign and precancerous diseases of the cervix from the position of cancer prevention. Clinical recommendations of the Ministry of Health of Russia. (In Russ.).
10. Grigore M., Cruickshank M.E., Nieminen P. et al. National guidelines for management of cervical squamous intraepithelial lesion: A survey of European Federation for colposcopy members. Eur J Obstet Gynecol Rep Biol 2021;256:46–50.
11. Tai Y.J., Chen Y.Y., Hsu H.C. et al. Clinical management and risk reduction in women with low-grade squamous intraepithelial lesion cytology: A population-based cohort study. PLoS One 2017;12(12):e0188203. DOI: 10.1371/journal.pone.0188203.
12. Firnhaber C., Swarts A., Goeieman B., Rakhombe N. et al. Cryotherapy reduces progression of cervical intraepithelial neoplasia grade 1 in South African HIV-infected women: A randomized, controlled trial. J Acquir Immune Defic Syndr 2017;76(5):532–8. DOI: 10.1097/QAI.0000000000001539..
13. St-Martin G., Thamsborg L.H., Andersen B. et al. Management of low-grade cervical cytology in young women. Cohort study from Denmark. Acta Oncol 2020;1–8. DOI: 10.1080/0284186X.2020.1831061.
14. Buick C., Jembere N., Wang L., Kupets R. Cervical screening and colposcopy management of women age 24 and under. J Obstet Gynaecol Can 2020;42(12):1518–24. DOI: 10.1016/j.jogc.2020.06.013.
15. Min C.J., Massad L.S., Dick R. et al. Assessing physician adherence to guidelines for cervicalcancer screening and management of abnormalscreening results. J Low Genit Tract Dis 2020;24(4):337–42. DOI: 10.1097/LGT.0000000000000558.
16. Pisarska J., Baldy-Chudzik K. MicroRNA-based fingerprinting of cervical lesions and cancer. J Clin Med 2020;9(11):3668.
17. Kolesnikov N.N., Titov S.E., Veryaskina Yu.A. et al. Improving the accuracy and informativeness of fineneedle aspiration biopsy of breast tumors by analyzing microRNA in the cytological smears. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2016;3(1):44–52. (In Russ.).
18. Hou R., Wang D., Lu J. MicroRNA-10b inhibits proliferation, migration and invasion in cervical cancer cells via direct targeting of insulin-like growth factor-1 receptor. Oncol Lett 2017;13(6):5009–15.
19. Zou D., Zhou Q., Wang D. et al. The downregulation of microRNA-10b and its role in cervical cancer. Oncol Res 2016;24(2):99–108. DOI: 10.3727/096504016X14611963142173.
20. Ding Z., Liu S.J., Liu X.W. et al. MiR-16 inhibits proliferation of cervical cancer cells by regulating KRAS. Eur Rev Med Pharmacol Sci 2020;24(20):10419–25. DOI: 10.26355/eurrev_202010_23393.
21. Okoye J.O., Ngokere A.A., Onyenekwe C.C., Erinle C.A. Comparable expression of miR-let-7b, miR-21, miR-182, miR-145, and p53 in serum and cervical cells: Diagnostic implications for early detection of cervical lesions. Int J Health Sci 2019;13(4):29–38.
22. Li Y., Zhang Z., Xiao Z. et al. Chemotherapy-mediated miR-29b expression inhibits the invasion and angiogenesis of cervical cancer. Oncotarget 2017;8(9):14655–65.
23. Zhu Y., Han Y., Tian T. et al. miR-21-5p, miR-34a, and human telomerase RNA component as surrogate markers for cervical cancer progression. Pathol Res Practice 2018;214(3):374–9.
24. Ribeiro J., Marinho-Dias J., Monteiro P. et al. miR-34a and miR-125b expression in hpv infection and cervical cancer development. BioMed Res Int 2015;2015:304584.
25. Fan Y., Sheng W., Meng Y. et al. LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b. Artif Cells Nanomed Biotechnol 2020;48(1):393–407. DOI: 10.1080/21691401.2019.1709852.
26. Xu J., Wang H., Wang H. et al. The inhibition of miR-126 in cell migration and invasion of cervical cancer through regulating ZEB1. Hereditas 2019;156(1):11. 27. Wang X. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep 2012;5(3):753–60. DOI: 10.3892/mmr.2011.696.
27. Tang T., Wong H.K., Gu W. et al. microRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol Oncol 2013;129(1):199–208.
28. Zhao X., Zhang W., Ji W. miR-196b is a prognostic factor of human laryngeal squamous cell carcinoma and promotes tumor progression by targeting SOCS2. Biochem Biochem Biophys Res Commun 2018;501(2):584–92. DOI: 10.1016/j.bbrc.2018.05.052.
29. How C., Hui A.B.Y., Alajez N.M. et al. microRNA-196b regulates the homeobox B7-vascular endothelial growth factor axis in cervical cancer. PLoS One 2013;8(7):e67846.
30. Wang H., Zhang D., Chen Q., Hong Y. Plasma expression of miRNA-21, -214, -34a, and -200a in patients with persistent HPV infection and cervical lesions. BMC Cancer 2019;19(1):986.
31. Mei J., Wang D.H., Wang L.L. et al. microRNA-200c suppressed cervical cancer cell metastasis and growth via targeting MAP4K4. Eur Rev Med Pharmacol Sci 2018;22(3):623–31.
32. Yang W., Hong L., Xu X. et al. LncRNA GAS5 suppresses the tumorigenesis of cervical cancer by downregulating miR-196a and miR-205. Tumor Biol 2017;39(7):1010428317711315.
33. Yu X., Zhao W., Yang X. et al. miR-375 Affects the proliferation, invasion, and apoptosis of HPV16-positive human cervical cancer cells by targeting IGF-1R. Int J Gynecol Cancer 2016;26(5):851–8.
34. Du P., Lai Y.H., Yao D.S. et al. Lentivirus media miR-1246 knockdown inhibits tumor growth and promotes apoptosis of SiHa cells. Zhonghua Fu Chan Ke Za Zhi 2018;53(7):481–6.
35. Androvic P., Valihrach L., Elling J. et al. Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Res 2017;45(15):1–13.
36. Korobkina E.A., Knyazeva M.S., Kil Yu.V. et al. Comparative analysis of microRNA detection methods using reverse transcription and quantitative polymerase chain reaction (RT-PCR). Klinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics 2018;63(11):722–8. (In Russ.).
37. Borisov E., Knyazeva M., Novak V. et al. Analysis of reciprocally dysregulated miRNAs in eutopic endometrium is a promising approach for low invasive diagnostics of adenomyosis. Diagnostics (Basel) 2020;10(10):782. DOI: 10.3390/ diagnostics10100782.
38. Knyazeva M., Korobkina E., Karizky A. et al. Reciprocal dysregulation of miR-146b and miR-451 contributes in malignant phenotype of follicular thyroid tumor. Inr J Med Sci 2020;21(17):5950.
39. Arkhangelskaya P.A., Samsonov R.B., Shtam T.A. et al. Assessment of the expression of 4 microRNAs in cytological specimens as an additional method for the diagnosis of cervical cancer. Opukholi zhenskoy reproduktivnoy sistemy = Tumors of Female Reproductive System 2017;13(3):63–72. (In Russ.).
40. Ivanov M., Titov S., Glushkov S. et al. Detection of high-grade neoplasia in air-dried cervical PAP smears by a microRNA-based classifier. Oncol Rep 2018;39(3):1099–111. DOI: 10.3892/or.2018.6214.
41. Chen C. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33(20):e179. DOI: 10.1093/nar/gni178.
42. Benes V., Collier P., Kordes C. et al. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Sci Rep 2015;5:11590. DOI: 10.1038/srep11590.
43. Rotival M., Siddle K.J., Silvert M. et al. Population variation of miRNAs and isomiRs and their impact on human immunity to infection. Genome Biol 2020;21(1):187. DOI: 10.1186/s13059-020-02098-w.
44. Inada K., Okoshi Y., Cho-Isoda Y. et al. Endogenous reference RNAs for microRNA quantitation in formalinfixed, paraffin-embedded lymph node tissue. Sci Rep 2018;8(1):5918. DOI: 10.1038/s41598-018-24338-7.
45. Faraldi M., Gomarasca M., Sansoni V. et al. Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci Rep 2019;9(1):1584. DOI: 10.1038/s41598-019-38505-x.
Review
For citations:
Knyazeva M.S., Prisyazhnaya Т.S., Zabegina L.M., Smirnova О.A., Mikhetko A.A., Berlev I.V., Malek A.V. Prognostic value of microRNA assessment in cervical epithelial cells of patients with mild dysplasia. Tumors of female reproductive system. 2020;16(4):66-75. (In Russ.) https://doi.org/10.17650/1994-4098-2020-16-4-66-75