Preview

Опухоли женской репродуктивной системы

Расширенный поиск

Картирование протеома лизата линии опухолевых клеток MCF-7 для идентификации потенциальных маркеров рака молочной железы

https://doi.org/10.17650/1994-4098-2012-0-2-4-10

Полный текст:

Аннотация

Проведено масс-спектрометрическое картирование протеома лизата линии опухолевых клеток MCF-7. В результате идентифици- рованы 153 белка с молекулярным весом от 5000 до 630 000 Да, значительную часть которых составили цитоплазматические и ядерные белки. На долю последних пришлось 60 % от общего числа, тогда как доля внеклеточных и мембранных белков составила 13 %. После применения нескольких критериев отбора для анализа полученных данных в работе представлен список из 31 потенциального биомаркера и описано 12 перспективных мишеней для таргетной терапии рака молочной железы.

Об авторах

В. Е. Шевченко
ФГБУ РОНЦ им. Н.Н. Блохина РАМН, Москва
Россия


М. А. Таипов
ФГБУ РОНЦ им. Н.Н. Блохина РАМН, Москва
Россия


С. В. Ковалев
ФГБУ РОНЦ им. Н.Н. Блохина РАМН, Москва
Россия


Н. Е. Арноцкая
ФГБУ РОНЦ им. Н.Н. Блохина РАМН, Москва
Россия


О. М. Павлова
ФГБУ РОНЦ им. Н.Н. Блохина РАМН, Москва
Россия


И. А. Кудрявцев
ФГБУ РОНЦ им. Н.Н. Блохина РАМН, Москва
Россия


З. Н. Никифорова
ФГБУ РОНЦ им. Н.Н. Блохина РАМН, Москва
Россия


Список литературы

1. Curado M.P., Edwards B., Shin H.R. et al. Cancer incidence in five continents. Vol. IX. IARC Scientific Publications No. 160. Lyon: IARC, 2007.

2. Schedin P., Borges V. Breaking down barriers: the importance of the stromal microenvironment in acquiring invasiveness in young women’s breast cancer. Breast Cancer Res 2009;11(2):102.

3. Wang Y.-C., Morrison G., Gillihan R. et al. Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers – role of estrogen receptor and HER2 reactivation. Breast Cancer Res 2011;13(6):121.

4. Ali H.R., Dawson S.-J., Blows F.M. et al. Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 2011;13(6):118.

5. Kang U.-B., Ahn Y., Lee J.W. et al. Differential profiling of breast cancer plasma proteome by isotope-coded affinity tagging method reveals biotinidase as a breast cancer biomarker. BMC Cancer 2010;10(114):2−9.

6. Шевченко В.Е., Арноцкая Н.Е., Таипов М.А. и др. Масс-спектрометрическое профилирование низкомолекулярного протеома плазмы крови для обнаружения потенциальных маркеров

7. рака молочной железы. Вестн РОНЦ им. Н.Н. Блохина РАМН 2011;22(3):27−33.

8. Shevchenko V.E., Arnotskaya N.E., Zaridze D.G. Detection of lung cancer using plasma protein profiling by matrix- assisted laser desorption/ionization mass spectrometry. Eur J Mass Spectrom 2010; 16(4):539−49.

9. Шевченко В.Е. Современные масс- спектрометрические методы в ранней диагностике рака. Масс-спектрометрия 2004;1(2):103−26.

10. Sarvaiya H.A., Yoon J.H., Lazar I.M. Proteome profile of the MCF7 cancer cell line: a mass spectrometric evaluation. Rapid Commun Mass Spectrom 2006;20(20):3039−55.

11. Chuthapisith S., Layfield R., Kerr I.D. et al. Proteomic profiling of MCF-7 breast cancer cells with chemoresistance to different types of anti-cancer drugs. Int J Oncol 2007;30:1545−51.

12. Шевченко В.Е., Ковалев С.В., Юрченко В.А. и др. Картирование протеома плазмы крови человека в норме и при светлоклеточном раке почки. Онкоурология 2011;(3):65−9.

13. Mi H., Guo N., Kejariwal A., Thomas P.D. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 2007;35:247−52.

14. Kuk C., Kulasingam V., Diamandis E.P. Mining the ovarian cancer ascites proteome for potential ovarian cancer biomarkers. Mol Cell Proteom 2009;8(4):661−9.

15. Mosca E., Alfieri R., Merelli I. et al. A multilevel data integration resource for breast cancer study. BMC Syst Biol 2010;4:76.

16. Alo P.L., Visca P., Trombetta G. et al. Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori 1999;85:35−40.

17. Jin Q., Yuan L.X., Boulbes D. et al. Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells. Breast Cancer Res 2010;12:96.

18. Desai K.V., Simmons J.L., Fargiano A. et al. S100A6 as a biomarker in human breast cancer. Proc Am Assoc Cancer Res 2005;46:448.

19. Liu X.G., Wang X.P., Li W.F. et al. Ca2+-binding protein S100A11: a novel diagnostic marker for breast carcinoma. Oncol Rep 2010;23(5):1301−8.

20. Rvillion F., Pawlowski V., Hornez L., Peyrat J.P. Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer 2000; 36(8):1038−42.

21. Zhang F., Zhang L., Zhang B. et al. Anxa2 plays a critical role in enhanced invasiveness of the multidrug resistant human breast cancer cells. J Proteome Res 2009;8(11):5041−7.

22. Sharma M.R., Koltowski L., Ownbey R.T. et al. Angiogenesis-associated protein annexin A II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 2006;81(2):146−56.

23. Hays A.P., Naini A., He C.Z., Mitsumoto H., Rowland L.P. Sporadic amyotrophic lateral sclerosis and breast

24. cancer: Hyaline conglomerate inclusions lead to identification of SOD1 mutation. J Neurol Sci 2006;242(1−2):67−9.

25. Lue H., Thiele M., Franz J. et al. Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity MIF regulates cell survival through Akt and JAB1. Oncogene 2007;26:5046−59.

26. Verjans E., Noetzel E., Bektas N. et al. Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer 2009;9:230.

27. Sharma M., Ownbey R.T., Sharma M.C. Breast cancer cell surface annexin II induces cell migration and neoangiogenesis via tPA dependent plasmin generation. Exp Mol Pathol 2010;88(2):278−86.

28. Frasor J., Weaver A.E., Pradhan M., Mehta K. Synergistic up-regulation of prostaglandin E synthase expression in breast cancer cells by 17 beta-estradiol and proinflammatory cytokines. Endocrinology 2008;149(12):6272−9.

29. Timoshenko A.V., Xu G., Chakrabarti S. et al. Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Exp Cell Res 2003; 289(2):265−74.

30. Zhang A., Dong Z., Yang T. Prostaglandin D2 inhibits TGF-beta 1-induced epithelial-to-mesenchymal transition in MDCK cells. Am J Physiol Renal Physiol 2006;291:1332−42.

31. Murata T., Lin M.I., Aritake K. et al. Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. PNAS 2008; 105(50):20009−14.

32. Wolf I., O’Kelly J., Rubinek T. et al. 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res 2006;66:7818−23.

33. Lehtinen L., Vainio P., Wikman H. et al. 15-Hydroxy-prostaglandindehydrogenase associates with poor prognosis in breast cancer, induces epithelial-mesenchymal transition, and promotes cell migration

34. in cultured breast cancer cells. J Pathol 2012;226(4):674−86.

35. Na H.-K., Park J.-M., Lee H.G. et al. 15-Hydroxyprostaglandin dehydrogenase as a novel molecular target for cancer chemoprevention and therapy. Biochem Pharmacol 2011;82:1352−60.

36. Lai T.-C., Chou H.-C., Chen Y.-W. et al. Secretomic and proteomic analysis of potential breast cancer markers by two- dimensional differential gel electrophoresis. J Proteome Res 2010;9(3):1302−22.

37. Chen X., Li N., Wang S. et al. Effects of raloxifene after tamoxifen on breast and endometrial tumor growth in athymic mice. J Natl Cancer Inst 2002;95(4):1053−61.

38. Chen X., Wang S., Wu N., Yang C.S. Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Curr Cancer Drug Targ 2004;4(3);267−83.

39. Niemantsverdriet M., Wagner K., Visser M., Backendorf. C. Cellular functions of 14-3-3 zeta in apoptosis and cell adhesion emphasize its oncogenic character oncogenic properties of 14-3-3 dzeta. Oncogene 2008;27:1315−9.

40. Lu J. 14-3-3 dzeta mediated Epithelial- Mesenchymal Transition (EMT) contributes to ErbB2 overexpressing Ductal Carcinoma in Situ (DCIS) progression in to invasive breast cancer. The University of Texas Graduate School of Biomedical Sciences at Houston, 2008. P. 185.

41. George D.C. 14-3-3 dzeta overexpression in early stage breast disease and tumor progression. The University of Texas Graduate School of Biomedical Sciences at Houston, 2007. P. 129.

42. Neal C.L., Xu J., Li P. et al. Overexpression of 14-3-3 dzeta in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene 2012;31: 897−906.

43. Qi W., Liu X., Chen W. et al. Overexpression of 14-3-3 γ causes polyploidization in H322 lung cancer cells. Mol Carcinogen 2007;46(10):847−56.

44. Jin Y.H., Kim Y.J., Kim D.W. et al. Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun 2008;368:690−5.

45. Radhakrishnan V.M., Martinez J.D. 14-3-3γ induces oncogenic transformation by stimulating MAP kinase and PI3K signaling. PLoS ONE;5(7):11433.

46. Leea M.Y., Jounga Y.H., Lima E.J. et al. Phosphorylation and activation of STAT proteins by hypoxia in breast cancer cells. Breast 2006;15(2):187−95;

47. Bowman T., Garcia R., Turkson J., Jove R. STATs in oncogenesis. Oncogene 2000;19:2474−88.

48. Thomas M., Finnegan C.E., Rogers K.M. et al. STAT1: a modulator of chemotherapy-induced apoptosis.

49. Cancer Res 2004;64(22):8357−64.

50. Townsend P.A., Scarabelli T.M., Davidson S.M. et al. STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 2004;279(7): 5811−20.

51. Huang S., Bucana C.D., Van Arsdall M. et al. Stat1 negatively regulates angiogenesis, tumorigenicity and metastasis of tumor cells. Oncogene 2002;21(16):2504−12.


Для цитирования:


Шевченко В.Е., Таипов М.А., Ковалев С.В., Арноцкая Н.Е., Павлова О.М., Кудрявцев И.А., Никифорова З.Н. Картирование протеома лизата линии опухолевых клеток MCF-7 для идентификации потенциальных маркеров рака молочной железы. Опухоли женской репродуктивной системы. 2012;(2):4-10. https://doi.org/10.17650/1994-4098-2012-0-2-4-10

For citation:


Shevchenko V.E., Taipov M.A., Kovalev S.V., Arnotskaya N.E., Pavlova O.M., Kudryavtsev I.A., Nikiforova Z.N. Mapping of proteomic lysate of a MCF-7 cancer cell line for the identification of potential markers for breast cancer. Tumors of female reproductive system. 2012;(2):4-10. (In Russ.) https://doi.org/10.17650/1994-4098-2012-0-2-4-10

Просмотров: 250


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)