Preview

Опухоли женской репродуктивной системы

Расширенный поиск

МЕЖКЛЕТОЧНЫЕ И КЛЕТОЧНО-МАТРИКСНЫЕ ВЗАИМОДЕЙСТВИЯ В КАРЦИНОМАХ МОЛОЧНОЙ ЖЕЛЕЗЫ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ

https://doi.org/10.17650/1994-4098-2018-14-1-20-27

Полный текст:

Аннотация

В настоящей статье на основании анализа литературных и собственных данных проведено изучение межклеточных и клеточноматриксных взаимодействий при опухолях молочной железы. Рассмотренные в работе данные имеют значение для понимания процессов межклеточного взаимодействия и закономерностей опухолевого роста, поскольку микроокружение опухоли играет важную роль в регуляции ее состояния.

Об авторах

М. В. Мнихович
ФГБНУ «Научно-исследовательский институт морфологии человека»; ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
117418 Москва, ул. Цюрупы, 3, 117997 Москва, ул. Островитянова, 1


Е. C. Мишина
ФГБОУ ВО «Курский государственный медицинский университет» Минздрава России
Россия
305041 Курск, ул. Карла Маркса, 3


Т. В. Безуглова
ФГБНУ «Научно-исследовательский институт морфологии человека»
Россия
117418 Москва, ул. Цюрупы, 3


К. В. Буньков
ОГБУЗ «Смоленский областной институт патологии»
Россия

Буньков Кирилл Вадимович

214018 Смоленск, проспект Гагарина, 27



Список литературы

1. Копнин Б.П. Современные представления о механизмах злокачественного роста. Материалы X Российского онкологического конгресса. М., 2007. С. 3–8.

2. Мнихович М.В. Межклеточные и клеточно-матриксные взаимодействия в опухолях: современное состояние проблемы. Российский медико-биологический вестник им. акад. И.П. Павлова 2013;3;161–71.

3. Перельмутер В.М., Завьялова М.В., Вторушин С.В. и др. Взаимосвязь морфологической гетерогенности инфильтрирующего протокового рака молочной железы с различными формами опухолевой прогрессии. Сибирский онкологический журнал 2007;3:58–64.

4. Халанский А.С., Кондакова Л.И., Гельперина С.Э. Перевиваемый штамм глиомы крысы 101.8. II. Использование в качестве модели для экспериментальной терапии опухолей мозга. Клиническая и экспериментальная морфология 2014;1:50–9.

5. Alpaugh M.L., Tomlinson J.S., Shao Z.M., Barsky S.H. A novel human xenograft model of inflammatory breast cancer. Cancer Res 1999;59(20):5079–84. PMID: 10537277.

6. Birchmeier W., Weidner K.M., Behrens J. Molecular mechanisms leading to loss of differentiation and gain of invasiveness in epithelial cells. J Cell Sci Suppl 1993;17:159–64. PMID: 8144693.

7. Dabbs D.J. Brest pathology. London: Elsevier, 2012. 180 p.

8. Harris L., Fritsche H., Mennel R. et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007;25(33):5287–312. DOI: 10.1200/JCO.2007.14.2364.

9. Friedl P., Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003;3(5):362–74. DOI: 10.1038/nrc1075.

10. Zavyalova M.V., Perelmuter V.M., Vtorushin S.V. et al. The presence of alveolar structures in invasive ductal NOS breast carcinoma is associated with lymph node metastasis. Diagn Cytopathol 2013;41(3): 279–82. DOI: 10.1002/dc.21852.

11. Mnikhovich М. Detection of Luse bodies in sсlerosing adenosis of breast: an ultrastruсtural study. Virchows Arch 2011;459(suppl 1):329.

12. Price D.J., Miralem T., Jiang S. et al. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 2001;12(3):129–35. PMID: 11306513.

13. Carneiro F., Oliveira C., Suriano G., Seruca R. Molecular pathology of familial gastric cancer, with an emphasis on hereditary diffuse gastric cancer. J Clin Pathol 2008;61(1):25–30. DOI: 10.1136/jcp.2006.043679.

14. Park B.W., Oh J.W., Kim J.H. et al. Preoperative CA 15-3 and CEA serum levels as predictor for breast cancer outcomes. Ann Oncol 2008;19(4):675–81. DOI: 10.1093/annonc/mdm538.

15. Alexander N.R., Tran N.L., Rekapally H. et al. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res 2006;66(7):3365–9. DOI: 10.1158/00085472.CAN-05-3401.

16. Шварцбурд П.М. Хроническое воспаление повышает риск развития эпителиальных новообразований, индуцируя предраковое микроокружение: анализ механизмов дисрегуляции. Вопросы онкологии 2006;52(2):137–44. [

17. Bannikov G.A., Guelstein V.I., Montesano R. et al. Cell shape and organization of cytoskeleton and surface fibronectin in non-tumorigenic rat liver cultures. J Cell Sci 1982;54:47–67. PMID: 7042722.

18. Василенко И.В., Кондратюк Р.Б., Брук Б.Б. Морфологические особенности зоны паренхиматозно-стромальных контактов в раке легкого с эпителиально-мезенхимальной трансформацией. Клиническая и экспериментальная морфология 2013;4:18–21.

19. Hay E.D. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995;154(1):8–20. PMID: 8714286.

20. Rosivatz E., Becker I., Specht K. et al. Differential expression of the epithelialmesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am J Pathol 2012;161(5):1881–91. DOI: 10.1016/S0002-9440(10)64464-1.

21. Zhou B.P., Deng J., Xia W. et al. Dual regulation of Snail by GSK-3betamediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004;6(10):931–40. DOI: 10.1038/ncb1173.

22. Berx G., Cleton-Jansen A.M., Nollet F. et al. E-cadherin is a tumor/invasion suppressor gene mutated in human lobular breast cancers. EMBO J 1995;14(24):6107–15. PMID: 8557030.

23. Carramusa L., Ballestrem C., Zilberman Y., Bershadsky A.D. Mammalian diaphanousrelated formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions. J Cell Sci 2007;120(Pt 21): 3870–82. DOI: 10.1242/jcs.014365.

24. Batlle E., Sancho E., Francí C. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000;2(2): 84–9. DOI: 10.1038/35000034.

25. Quaranta M., Daniele A., Coviello M. et al. MMP-2, MMP-9, VEGF and CA 15.3 in breast cancer. Anticancer Res 2007;27(5B):3593–600. PMID: 17972522.

26. Park B.-K., Zeng X., Glazer R.I. Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 2001;61(20):7647–53. PMID: 11606407.

27. Anastasiadis P.Z. Pl20-ctn: a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta 2007;1773(1): 34–46. DOI: 10.1016/j.bbamcr.2006.08.040.

28. Kimura K., Ito M., Amano M., Chihara K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rhokinase). Science 1996;273(5272):245–8. PMID: 8662509.

29. Peinado H., Quintanilla M., Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003;278(23):21113–23. DOI: 10.1074/jbc.M211304200.

30. Аникеева Н.В. Роль рецепторов эстрогенов, прогестерона, андрогенов, онкобелка HER-2, антигена Ki-67 в прогнозе рака молочной железы. Автореф. дис. … канд. биол. наук. СПб., 2006. 138 с.

31. Onder T.T., Gupta P.B., Mani S.A. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008;68(10): 3645–54. DOI: 10.1158/0008-5472.CAN07-2938.

32. Peinado H., Quintanilla M., Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003;278(23):21113–23. DOI: 10.1074/jbc.M211304200.

33. Droufakou S., Deshmane V., Roylance R. et al. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 2001;92(3):404–8. PMID: 11291078.

34. Miralem T., Steinberg R., Price D., Avraham H. VEGF (165) requires extracellular matrix components to inducemitogenic effects and migratory response in breast cancer cells. Oncogene 2001;20(39):5511–24. DOI: 10.1038/sj.onc.1204753.

35. Mnikhovich М., Kakturskiy L. Morphologocal analysis of stromal population of mast cell in breast cancer. Virchows Archiv 2012;461(suppl 1): 243–4.

36. Iovino F., Ferraraccio F., Orditura M. et al. Serum v ascular endothelial growth factor (VEGF) levels correlate with tumor VEGF and p53 overexpression in endocrine positive primary breast cancer. Cancer Invest 2008;26(3):250–55. DOI: 10.1080/07357900701560612.

37. Zhang J., Lu A., Beech D. et al. Suppression of breast cancer metastasis through the inhibition of VEGF-mediated tumor angiogenesis. Cancer Ther 2007;5:273–86. PMID: 18548129. DOI: 10.17650/1994‑4098‑2018‑14‑1‑20-27


Для цитирования:


Мнихович М.В., Мишина Е.C., Безуглова Т.В., Буньков К.В. МЕЖКЛЕТОЧНЫЕ И КЛЕТОЧНО-МАТРИКСНЫЕ ВЗАИМОДЕЙСТВИЯ В КАРЦИНОМАХ МОЛОЧНОЙ ЖЕЛЕЗЫ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ. Опухоли женской репродуктивной системы. 2018;14(1):20-27. https://doi.org/10.17650/1994-4098-2018-14-1-20-27

For citation:


Mnikhovich M.V., Mishinа E.S., Bezuglova T.В., Bun’kov K.V. INTERCELLULAR AND CELL-MATRIX INTERACTIONS IN BREAST CARCINOMA: THE PRESENT STATE OF PROBLEM. Tumors of female reproductive system. 2018;14(1):20-27. (In Russ.) https://doi.org/10.17650/1994-4098-2018-14-1-20-27

Просмотров: 149


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)