Preview

Tumors of female reproductive system

Advanced search

INTERCELLULAR AND CELL-MATRIX INTERACTIONS IN BREAST CARCINOMA: THE PRESENT STATE OF PROBLEM

https://doi.org/10.17650/1994-4098-2018-14-1-20-27

Abstract

In the article, based on the analysis of literature and own data, the study of intercellular and cell-matrix interactions in breast tumors was performed. The data considered in the article are important for understanding the processes of intercellular interaction and patterns of tumor growth, since tumor microenvironment plays an important role in the regulation of tumor state.

About the Authors

M. V. Mnikhovich
Research Institute of Human Morphology; Pirogov Russian National Research Medical University, Ministry of Health of Rus
Russian Federation
3 Tsyurupy St., 117418 Moscow, 1 Ostrovityanova St., 117997 Moscow

Competing Interests:


E. S. Mishinа
Kursk State Medical University, Ministry of Health of Russia
Russian Federation
3 Karl Marx St., 305041 Kursk


T. В. Bezuglova
Research Institute of Human Morphology
Russian Federation
3 Tsyurupy St., 117418 Moscow
Competing Interests:


K. V. Bun’kov
Smolensk Regional Institute of Pathology
Russian Federation
27 Gagarin Prospekt, 214018 Smolensk
Competing Interests:


References

1. Kopnin B.P. Current concepts of the mechanisms of malignant growth. Proceedings of 10th Russian Cancer Congress. Moscow, 2007. Pp. 3–8. (In Russ.).

2. Mnikhovich M.V. Intercellular and cell-matrix interactions in tumors: current state of the problem. Rossiyskiy mediko-biologicheskiy vestnik im. akad. I.P. Pavlova = Acad. I.P. Pavlov Russian Medico-Biological Bulletin 2013;3;161–71. (In Russ.).

3. Perelmuter V.M., Zavyalova M.V., Vtorushin S.V. et al. Association between the morphologic heterogeneity of infiltrating ductal breast carcinoma and various forms of tumor progression. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology 2007;3: 58–64. (In Russ.).

4. Khalanskiy A.S., Kondakova L.I., Gelperina S.E. Transplanted rat glioma 101.8. II. A model for experimental therapy of brain tumors. Klinicheskaya i eksperimentalnaya morfologiya = Journal of Clinical and Experimental Morphology 2014;1:50–9. (In Russ.).

5. Alpaugh M.L., Tomlinson J.S., Shao Z.M., Barsky S.H. A novel human xenograft model of inflammatory breast cancer. Cancer Res 1999;59(20):5079–84. PMID: 10537277.

6. Birchmeier W., Weidner K.M., Behrens J. Molecular mechanisms leading to loss of differentiation and gain of invasiveness in epithelial cells. J Cell Sci Suppl 1993;17:159–64. PMID: 8144693.

7. Dabbs D.J. Brest pathology. London: Elsevier, 2012. 180 p.

8. Harris L., Fritsche H., Mennel R. et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007;25(33):5287–312. DOI: 10.1200/JCO.2007.14.2364.

9. Friedl P., Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003;3(5):362–74. DOI: 10.1038/nrc1075.

10. Zavyalova M.V., Perelmuter V.M., Vtorushin S.V. et al. The presence of alveolar structures in invasive ductal NOS breast carcinoma is associated with lymph node metastasis. Diagn Cytopathol 2013;41(3): 279–82. DOI: 10.1002/dc.21852.

11. Mnikhovich М. Detection of Luse bodies in sсlerosing adenosis of breast: an ultrastruсtural study. Virchows Arch 2011;459(suppl 1):329.

12. Price D.J., Miralem T., Jiang S. et al. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 2001;12(3):129–35. PMID: 11306513.

13. Carneiro F., Oliveira C., Suriano G., Seruca R. Molecular pathology of familial gastric cancer, with an emphasis on hereditary diffuse gastric cancer. J Clin Pathol 2008;61(1):25–30. DOI: 10.1136/jcp.2006.043679.

14. Park B.W., Oh J.W., Kim J.H. et al. Preoperative CA 15-3 and CEA serum levels as predictor for breast cancer outcomes. Ann Oncol 2008;19(4):675–81. DOI: 10.1093/annonc/mdm538.

15. Alexander N.R., Tran N.L., Rekapally H. et al. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res 2006;66(7):3365–9. DOI: 10.1158/00085472.CAN-05-3401.

16. Shvartsburd P.M. Chronic inflammation increases the risk of epithelial neoplasia by inducing precancerous microenvironment: an evaluation of disregulation pathways. Voprosy onkologii = Problems in Oncology 2006;52(2):137–44. (In Russ.).

17. Bannikov G.A., Guelstein V.I., Montesano R. et al. Cell shape and organization of cytoskeleton and surface fibronectin in non-tumorigenic rat liver cultures. J Cell Sci 1982;54:47–67. PMID: 7042722.

18. Vasilenko I.V., Kondratyuk R.B., Bruk B.B. Morphological features of the parenchymal-stromal interactions area in lung cancer with epithelialmesenchymal transition. Klinicheskaya i eksperimentalnaya morfologiya = Journal of Clinical and Experimental Morphology 2013;4:18–21. (In Russ.).

19. Hay E.D. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995;154(1):8–20. PMID: 8714286.

20. Rosivatz E., Becker I., Specht K. et al. Differential expression of the epithelialmesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am J Pathol 2012;161(5):1881–91. DOI: 10.1016/S0002-9440(10)64464-1.

21. Zhou B.P., Deng J., Xia W. et al. Dual regulation of Snail by GSK-3betamediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004;6(10):931–40. DOI: 10.1038/ncb1173.

22. Berx G., Cleton-Jansen A.M., Nollet F. et al. E-cadherin is a tumor/invasion suppressor gene mutated in human lobular breast cancers. EMBO J 1995;14(24):6107–15. PMID: 8557030.

23. Carramusa L., Ballestrem C., Zilberman Y., Bershadsky A.D. Mammalian diaphanousrelated formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions. J Cell Sci 2007;120(Pt 21): 3870–82. DOI: 10.1242/jcs.014365.

24. Batlle E., Sancho E., Francí C. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000;2(2): 84–9. DOI: 10.1038/35000034.

25. Quaranta M., Daniele A., Coviello M. et al. MMP-2, MMP-9, VEGF and CA 15.3 in breast cancer. Anticancer Res 2007;27(5B):3593–600. PMID: 17972522.

26. Park B.-K., Zeng X., Glazer R.I. Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 2001;61(20):7647–53. PMID: 11606407.

27. Anastasiadis P.Z. Pl20-ctn: a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta 2007;1773(1): 34–46. DOI: 10.1016/j.bbamcr.2006.08.040.

28. Kimura K., Ito M., Amano M., Chihara K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rhokinase). Science 1996;273(5272):245–8. PMID: 8662509.

29. Peinado H., Quintanilla M., Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003;278(23):21113–23. DOI: 10.1074/jbc.M211304200.

30. Anikeeva N.V. Role of estrogen receptors, progesterone receptors, androgen receptors, HER-2 oncoprotein, and Ki-67 antigen in the prognosis of breast cancer. Summary of thesis … of candidate of biological sciences. Saint Petersburg, 2006. 138 p. (In Russ.).

31. Onder T.T., Gupta P.B., Mani S.A. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008;68(10): 3645–54. DOI: 10.1158/0008-5472.CAN07-2938.

32. Peinado H., Quintanilla M., Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003;278(23):21113–23. DOI: 10.1074/jbc.M211304200.

33. Droufakou S., Deshmane V., Roylance R. et al. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 2001;92(3):404–8. PMID: 11291078.

34. Miralem T., Steinberg R., Price D., Avraham H. VEGF (165) requires extracellular matrix components to inducemitogenic effects and migratory response in breast cancer cells. Oncogene 2001;20(39):5511–24. DOI: 10.1038/sj.onc.1204753.

35. Mnikhovich М., Kakturskiy L. Morphologocal analysis of stromal population of mast cell in breast cancer. Virchows Archiv 2012;461(suppl 1): 243–4.

36. Iovino F., Ferraraccio F., Orditura M. et al. Serum v ascular endothelial growth factor (VEGF) levels correlate with tumor VEGF and p53 overexpression in endocrine positive primary breast cancer. Cancer Invest 2008;26(3):250–55. DOI: 10.1080/07357900701560612.

37. Zhang J., Lu A., Beech D. et al. Suppression of breast cancer metastasis through the inhibition of VEGF-mediated tumor angiogenesis. Cancer Ther 2007;5:273–86. PMID: 18548129. DOI: 10.17650/1994‑4098‑2018‑14‑1‑20-27


Review

For citations:


Mnikhovich M.V., Mishinа E.S., Bezuglova T.В., Bun’kov K.V. INTERCELLULAR AND CELL-MATRIX INTERACTIONS IN BREAST CARCINOMA: THE PRESENT STATE OF PROBLEM. Tumors of female reproductive system. 2018;14(1):20-27. (In Russ.) https://doi.org/10.17650/1994-4098-2018-14-1-20-27

Views: 593


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1994-4098 (Print)
ISSN 1999-8627 (Online)